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I. INTRODUCTION

The capacity achieving coding scheme for downlink transmission in a multiuser MIMO system is the

dirty-paper coding (DPC) [1], [2]. We consider a system with K users, each equipped with Nr antennas

being served by a Nt-antenna base-station (BS). With DPC, the capacity limit of the multiuser broadcast

channel (BC) is found through the optimization [3], [4]:

maximize
Q1,...,QK

K∑
i=1

log

∣∣∣INr
+ Hi

(∑i
j=1 Qj

)
H∗i

∣∣∣∣∣∣INr
+ Hi

(∑i−1
j=1 Qj

)
H∗i

∣∣∣ (1)

subject to

K∑
i=1

Tr {Qi} ≤ P

where Hi is the downlink channel to user-i, Qi is the transmit covariance matrix for user-i, I is the

Gaussian noise covariance matrix and P is power constraint at the BS. Herein, we assume an encoding

order from user-K to user-1 so that a codeword intended for user-i does not see the interference from

user-K to user-(i+1). Note that the formulation in (1) requires abstracting the receiver operation and the

number of data streams to each users. In contrast, with a linear coding scheme and the minimization of

weighted mean squared error (WMMSE) algorithm [5], the number of data streams for each user can be

specified through the dimension of the precoders. To provide a fair comparison between different fully

digital, two-stage sparse hybrid, and proposed hybrid (W)MMSE precoding/combining schemes, a same

limit on the number of data streams must be set in deriving their algorithmic solutions. In this case, the

number of data streams for user-i is NRF
r .

Although problem (1) is nonconvex. it can be optimally solved [4], [6]. At its optimal solution, the

rank of the covariance matrix Qi then determines the number of data streams transmitted to user-i. If
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the number of data streams for user-i is capped at NRF
r , problem (1) becomes

maximize
Q1,...,QK

K∑
i=1

log

∣∣∣INr
+ Hi

(∑i
j=1 Qj

)
H∗i

∣∣∣∣∣∣INr
+ Hi

(∑i−1
j=1 Qj

)
H∗i

∣∣∣ (2)

subject to

K∑
i=1

Tr {Qi} ≤ P

rank {Qi} ≤ NRF
r .

The nonconvex rank constraints then make the problem even harder to solve than the original problem

(1). For a single user system, an optimal solution to problem (2) can be found by waterfilling to the

NRF
r strongest eigenmodes. However, no work has tackled problem (2) in a multiuser setting. To this

end, we attempt to provide an algorithmic solution to problem (2) via two main steps: 1) proving the

equivalence between problem (2) and an optimization in the multiple-access channel (MAC) using the

uplink-downlink duality, and 2) devising numerical algorithms to solve the MAC problem.

II. THE EQUIVALENT MAC PROBLEM

Lemma 1. Given a covariance matrix Σ for some channel H, there exists a covariance matrix Σ such

that tr{Σ} ≤ tr{Σ}, rank{Σ} ≤ rank{Σ} and

log
∣∣I + HΣH∗

∣∣ = log
∣∣I + H∗ΣH

∣∣. (3)

Proof: This lemma arises from the concept of flipped channel in [3] with the additional consideration

of the matrix rank. If the singular value decomposition of H is H = FΛG∗, then one can choose

Σ = FG∗ΣGF∗. Clearly, rank{Σ} ≤ rank{Σ}. The proof of log
∣∣I+HΣH∗

∣∣ = log
∣∣I+H∗ΣH

∣∣ and

rank{Σ} ≤ rank{Σ} are given in Appendix A of [3].

Consider a MAC with H∗i = Hi as the uplink channel from user-i to the BS. Denote Pi as the transmit

covariance matrix of user-i in the MAC. We assume successive interference cancellation in the MAC

where user-1 is decoded first, followed by user-2 and continuously until user-K.

Let

Ai , INr
+ Hi

 i−1∑
j=1

Qj

H∗i (4)

Bi , INt
+

K∑
j=i+1

H∗jPjHj (5)
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Denote RMAC
i as the achievable data rate for user-i in the MAC, which is given by

RMAC
i = log

∣∣∣INt
+
∑K

j=i H
∗
jPjHj

∣∣∣∣∣∣INt
+
∑K

j>i H
∗
jPjHj

∣∣∣ = log
∣∣INt

+ B−1i H∗iPiHi

∣∣ . (6)

Likewise, denote RBC
i as the achievable data rate for user-i in the BC, which is given by

RBC
i = log

∣∣∣INr
+ Hi

(∑i
j=1 Qj

)
H∗i

∣∣∣∣∣∣INr
+ Hi

(∑i−1
j=1 Qj

)
H∗i

∣∣∣ = log
∣∣INr

+ A−1i H∗iQiHi

∣∣ (7)

Lemma 2. Given an arbitrary set of uplink covariance matrix P1, . . . ,PK , it is possible to find a set

of downlink covariance matrices Q1, . . . ,QK such that
∑K

i=1Tr {Qi} ≤
∑K

i=1Tr {Pi}, RBC
i = RMAC

i ,

and rank{Qi} ≤ rank{Pi}.

Proof: This lemma arises from the MAC-BC transformation in [3] with the additional consideration

of the matrix rank. In this transformation, if Qi is chosen as

Qi = B
−1/2
i A

1/2
i PiA

1/2
i B

−1/2
i (8)

then RBC
i = RMAC

i [3]. Herein, A
1/2
i PiA

1/2
i is obtained from flipping the channel B

−1/2
i H∗iA

−1/2
i with

the covariance matrix A
1/2
i PiA

1/2
i . Then, we have

rank{Qi} ≤ rank
{
A

1/2
i PiA

1/2
i

}
≤ rank

{
A

1/2
i PiA

1/2
i

}
= rank{Pi} (9)

where the second equality is due to Lemma 1 and the equality is due to the full rank matrix Ai.

Lemma 3. Given an arbitrary set of downlink covariance matrix Q1, . . . ,QK , it is possible to find a

set of uplink covariance matrices P1, . . . ,PK such that
∑K

i=1Tr {Pi} ≤
∑K

i=1Tr {Qi}, RMAC
i = RBC

i ,

and rank{Pi} ≤ rank{Qi}.

Proof: The proof of this lemma is similar to that of Lemma 2 using the BC-MAC transformation

in [3].

Consider the sum-rate maximization in MAC with the rank constraints as follows:

maximize
P1,...,PK

log

∣∣∣∣∣INt
+

K∑
i=1

H∗iPiHi

∣∣∣∣∣ (10)

subject to

K∑
i=1

Tr{Pi} ≤ P

rank{Pi} ≤ NRF
r .
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One direct implication of Lemmas 2 and 3 is that the optimal solution of problem (10) can induce the

optimal solution of problem (2) via the MAC-BC transformation. Thus, we are interested in solving

problem (10) with the following two approaches.

III. ALGORITHMIC SOLUTIONS TO THE MAC PROBLEM

A. Sum Power Iterative Waterfilling

The sum power iterative waterfilling algorithm [4] can be modified to accommodate the rank constraints

as follows:

1) Generate the effective channels

G
(n)
i = Hi

INt
+

K∑
j 6=i

H∗jP
(n−1)
i Hi

−1/2 (11)

for i = 1, . . . ,K.

2) Treating these effective channels as parallel, noninterfering channels, obtain the new covariance

matrices
{
P

(n)
i

}K
i=1

by

{
P

(n)
i

}K
i=1

= arg max
Pi�0,

∑K
i=1 Tr{Pi}≤P

rank{Pi}≤NRF
r

K∑
i=1

log
∣∣∣INt

+
(
G

(n)
i

)∗
PiG

(n)
i

∣∣∣ . (12)

Perform the eigen-decomposition G
(n)
i

(
G

(n)
i

)∗
= UiDiU

∗
i , where Ui is unitary and Di is

diagonal. Denote D̃i as an NRF
r × NRF

r diagonal matrix whose diagonal elements are the NRF
r

strongest eigenvalues in Di. Then the updated covariance matrices are given by

P
(n)
i = UiΛiU

∗
i (13)

where Λi = blkdiag

{[
µINr

− D̃−1i

]+
,0Nr−NRF

r

}
and the operation [X]+ denotes a component-

wise maximum with zero. Here, the water-filling level µ is chosen such that
∑K

i=1Tr{P
(n)
i } = P .

B. Dual Decomposition

The sum-rate maximization problem (10) can also be solved via the dual decomposition [6]. Denote

the Lagrangian function

L(P1, . . . ,PK , λ) = log

∣∣∣∣∣INt
+

K∑
i=1

H∗iPiHi

∣∣∣∣∣− λ
(

K∑
i=1

Tr{Pi} − P

)
(14)
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where λ ≥ 0 is the Lagrangian multiplier associated with the power constraint. Then the optimization

(10) can be restated as

minimize
λ≥0

max
Pi�0, rank{Pi}≤NRF

r

L(P1, . . . ,PK , λ). (15)

For a given λ, L(P1, . . . ,PK , λ) can be maximized through the following inner loop iteration until

convergence:

1) For user-i, generate the effective noise covariance matrix

Ri = INt
+

K∑
j 6=i

H∗jP
(n−1)
j Hj (16)

2) Update Pi through the following optimization

P
(n)
i = maximize

Pi�0, rank{Pi}≤NRF
r

log
∣∣INt

+ R−1i H∗iPiHi

∣∣− λTr{Pi}. (17)

Perform the eigen-decomposition HiR
−1
i H∗i = UiDiU

∗
i , where Ui is unitary and Di is diagonal.

Denote D̃i as an NRF
r × NRF

r diagonal matrix whose diagonal elements are the NRF
r strongest

eigenvalues in Di. Then the updated covariance matrices are given by

P
(n)
i = UiΣiU

∗
i (18)

where Σi = blkdiag

{[
(1/λ)INr

− D̃−1i

]+
,0Nr−NRF

r

}
.

At the outer loop iteration, λ can be easily updated by the bisection method until
∑K

i=1Tr{Pi} = P .
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