Optimization in Wireless Multi-relay Networks

Duy H. N. Nguyen Advisor: Prof. Ha H. Nguyen

Department of Electrical & Computer Engineering University of Saskatchewan Saskatoon, SK, Canada, S7N5A9 duy.nguyen@usask.ca

May 13, 2009

< 同 > < 国 > < 国 >

Outline

- Introduction to Cooperative Communication
 - Cooperative Communication
- Part I: Distributed Space-Time Coding (DSTC)
 - System Model
 - Fourier-based DUSTM
 - Power Allocation (PA) in DSTC
 - Optimal Training and Mismatched Decoding in DSTC
- 3 Part II: Distributed Beamforming
 - Introduction & System Model
 - Guaranteed QoS
 - SNR Margin Maximization

Conclusion

伺 ト イヨト イヨト

Introduction to Cooperative Communication Part I: Distributed Space-Time Coding (DSTC)

Part I: Distributed Space-Time Coding (DSTC) Part II: Distributed Beamforming Conclusion Cooperative Communication

Cooperative Communication - Overview

- A new form of spatial diversity.
- Users cooperate to relay signals of each other, and emulate a virtual array of transmit antennas.
- Huge potential in improving the reliability of the wireless network.

化原因 化原因

Introduction to Cooperative Communication

Part I: Distributed Space-Time Coding (DSTC) Part II: Distributed Beamforming Conclusion

Cooperative Communication

Amplify-and-forward - Two stages of transmission

- First stage: Source (S) transmits to both Relay (R) and Destination (D).
- Second stage: Relay amplifies the received signal and forwards it to Destination.
- Destination combines the two received signals to decode.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC

System Model (in Part I)

- One antenna per node, used for both TX and RX.
- R relays work in half-duplex mode, Amplify-and-Forward (AF) protocol is considered.
- No direct link from source to destination.

SKATCHEWAN

・ 同 ト ・ ヨ ト ・ ヨ ト

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Distributed Space-Time Coding (DSTC)

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Distributed Space-Time Coding (DSTC)

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Distributed Space-Time Coding (DSTC) (cont.)

• The mathematical model is

$$\mathbf{y} = \sum_{i=1}^{R} \tilde{g}_i \mathbf{t}_i + \mathbf{z}_D = \mathbf{X} \mathbf{\Lambda} \mathbf{h} + \mathbf{z}$$

where $\mathbf{X} = [\mathbf{A}_{1}\mathbf{s}, \dots, \mathbf{A}_{R}\mathbf{s}]$ $\mathbf{\Lambda} = \operatorname{diag}\left(\sqrt{\varepsilon_{1}\sigma_{F_{1}}^{2}\sigma_{G_{1}}^{2}}, \dots, \sqrt{\varepsilon_{R}\sigma_{F_{R}}^{2}\sigma_{G_{R}}^{2}}\right)$ $\mathbf{h} = \left[f_{1}^{(*)}g_{1}, \dots, f_{R}^{(*)}g_{R}\right]^{T}$ $\mathbf{z} = \frac{1}{\sqrt{P_{0}T\sigma_{R}^{2}}}\sum_{i=1}^{R}\sqrt{\varepsilon_{i}\sigma_{G_{i}}^{2}}g_{i}\mathbf{A}_{i}\mathbf{z}_{R_{i}}^{(*)} + \frac{1}{\sqrt{P_{0}T\sigma_{D}^{2}}}\mathbf{z}_{D}.$

• X is now a distributed space-time codeword.

イロト イポト イヨト イヨト

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

<ロ> <同> <同> < 同> < 回> < 回>

Early Works and My Works in DSTC

- Applying ST coding in MIMO systems to relay networks.
- Coherent networks (CSI of S → R, R → D known): linear dispersion DSTC [Jing06], orthogonal DSTC [Jing07].
- Partially coherent networks (only CSI of R → D known): differential DSTC [Kiran07].
- Noncoherent networks (CSI unknown): cyclic DSTC [Oggier06].
- My approach:
 - Propose Fourier-based Distributed Unitary Space-Time Modulation (DUSTM): design source signal s_k and relaying matrix A_i → design X_k.
 - Provide a unified analysis for partially-coherent and noncoherent networks.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

DUSTM in a Partially Coherent Network

The ML decoding is to maximize the probability p(y|X_k, {g_i}). The decoding rule could be found as

$$\mathbf{X}_{ML} = \arg \max_{\mathbf{X}_k = \mathbf{X}_1, \dots, \mathbf{X}_L} \mathbf{y}^{\mathcal{H}} \mathbf{X}_k \mathbf{C} \mathbf{X}_k^{\mathcal{H}} \mathbf{y}, \qquad (1)$$

where

$$\mathbf{C} = \operatorname{diag}\left(\frac{\beta_1|g_1|^2}{\gamma + \beta_1|g_1|^2}, \dots, \frac{\beta_R|g_R|^2}{\gamma + \beta_R|g_R|^2}\right)$$
$$\gamma = \frac{1}{P_0 T} \left(1 + \sum_{i=1}^R \varepsilon_i \sigma_{G_i}^2 |g_i|^2\right)$$
$$\beta_i = \varepsilon_i \sigma_{F_i}^2 \sigma_{G_i}^2.$$

<ロ> <同> <同> < 同> < 回> < 回>

DUSTM in a Noncoherent Network

- p(y|X_k) does not appear to have a closed-form expression. The optimal ML decoder is *unavailable*.
- A suboptimal Generalized Likelihood Ratio Test (GLRT) decoder can be derived as

$$\mathbf{X}_{GRTL} = \arg \max_{\mathbf{X}_k = \mathbf{X}_1, \dots, \mathbf{X}_L} \mathbf{y}^{\mathcal{H}} \mathbf{X}_k \mathbf{X}_k^{\mathcal{H}} \mathbf{y}.$$
 (2)

• *Remarks:* The difference between the ML decoder in (1) and the GLRT decoder in (2) is the existence of the matrix C, which contains the CSI of the $R \rightarrow D$ channels.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Partially-coherent vs. Noncoherent

• Symbol error performance of DUSTM: $\sigma_{F_i}^2 = 10$ and $\sigma_{G_i}^2 = 1$.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

The Optimization Problem

• The average SNR at the destination:

$$SNR = \frac{P_0 T}{RN_0} \frac{\sum_{i=1}^R \varepsilon_i \sigma_{F_i}^2 \sigma_{G_i}^2}{1 + \sum_{i=1}^R \varepsilon_i \sigma_{G_i}^2}.$$
 (3)

• The optimization problem

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

< ロ > < 同 > < 回 > < 回 >

Balanced Networks

- Early works *only* consider the special case: $\sigma_{F_i}^2 = \sigma_{G_i}^2 = 1$, the "Equal PA" scheme $P_0 = P/2$, $P_i = P/(2R)$ is optimal.
- My approach: Study the PA scheme for arbitrary $\sigma_{F_i}^2$ and $\sigma_{G_i}^2$.
- Balanced networks: $\sigma_{F_1}^2 = \ldots = \sigma_{F_R}^2 = \sigma_F^2$, and $\sigma_{G_1}^2 = \ldots = \sigma_{G_R}^2 = \sigma_G^2$, the optimal PA scheme is

$$P_{0} = \begin{cases} \frac{\sqrt{(P\sigma_{F}^{2}+N_{0})(P\sigma_{G}^{2}+N_{0})}-(P\sigma_{G}^{2}+N_{0})}{\sigma_{F}^{2}-\sigma_{G}^{2}}, \text{ if } \sigma_{F}^{2} \neq \sigma_{G}^{2} \\ P/2, & \text{ if } \sigma_{F}^{2} = \sigma_{G}^{2} \\ P_{1} = \dots = P_{R} = (P-P_{0})/R. \end{cases}$$

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Unbalanced Networks

- The network is called unbalanced if the conditions $\sigma_{F_1}^2 = \ldots = \sigma_{F_R}^2$ and $\sigma_{G_1}^2 = \ldots = \sigma_{G_R}^2$ are not met.
- To get the maximum SNR, the relay power is allocated to the best relay, say the *j*th relay. Thus, only one fading path is active → compromise the performance of the DSTC.

(日) (同) (日) (日)

Balancing the Unbalanced Networks

- The amount of fading (AoF) is a common measure of fading severity in a fading channel model.
- Establish the condition to minimize the amount of fading in a relay network to balance the fading statistics of each $S \rightarrow R \rightarrow D$ link.
- With the AoF constraint, the optimal PA scheme

$$P_{0} = \begin{cases} \frac{\sqrt{(Pa+c)(Pb+c)} - (Pa+c)}{b-a}, & \text{if } b \neq a\\ P/2, & \text{if } b = a \end{cases}$$
$$P_{i} = \frac{P - P_{0}}{P_{0}b + c} \cdot \frac{P_{0}\sigma_{F_{i}}^{2} + N_{0}}{\sigma_{F_{i}}^{2}\sigma_{G_{i}}^{2}}, \quad i = 1, \dots, R, \qquad (4)$$

where a, b, and c are parameters.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Some Remarks

- The proposed PA scheme achieves the maximum diversity order in all coherent, partially coherent, and noncoherent relay networks.
- The proposed PA scheme yields a significant performance advantage over the "equal PA" scheme.

• Consider the unbalanced network:

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Noncoherent Network

 Distributed Unitary Space-Time Modulation (USTM) is applied to the noncoherent network with 2 and 3 relays.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Coherent Network

 Distributed Orthogonal Space-Time Block Coding (OSTBC) is applied to the coherent network with 2 and 4 relays.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

<ロト <同ト < 国ト < 国ト

Optimal Training in DSTC

- Coherent ML decoding of DSTC requires the knowledge of channel coefficient vector **h**.
- Need to estimate **h** at the destination:
 - $\bullet\,$ Send a known training sequence u from the source

$$\mathbf{y}_{\mathcal{T}} = \mathbf{X}_{\mathcal{T}} \mathbf{\Lambda} \mathbf{h} + \mathbf{z}_{\mathcal{T}},$$

where
$$\mathbf{X}_T = [\mathbf{A}_1 \mathbf{u}^{(*)}, \dots, \mathbf{A}_R \mathbf{u}^{(*)}].$$

- Estimate **h** from \mathbf{y}_T , \mathbf{X}_T , and $\mathbf{\Lambda}$.
- Early works studies the optimal design of X_T [Gao08].
- My approach: find the optimal PA scheme in training phase, and investigate the impact of imperfect CSI to the coherent code.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Mean-Square Error in Channel Estimation

• Maximum Likelihood (ML) estimation:

$$\operatorname{cov}\left(\boldsymbol{\Delta}_{h}\right)=\bar{\gamma}\boldsymbol{\Lambda}^{-1}(\boldsymbol{X}_{T}^{\mathcal{H}}\boldsymbol{X}_{T})^{-1}\boldsymbol{\Lambda}^{-1}.$$

where
$$\bar{\gamma} = \mathbb{E}[\gamma] = \frac{1}{P_0 T} \left(1 + \sum_{i=1}^R \varepsilon_i \sigma_{G_i}^2 |g_i|^2 \right)$$

• Minimum Mean-Square Error (MMSE) estimation

$$\operatorname{cov}(\mathbf{\Delta}_h) = \left(\mathbf{I}_R + \frac{1}{\bar{\gamma}}\mathbf{\Lambda}\mathbf{X}_T^{\mathcal{H}}\mathbf{X}_T\mathbf{\Lambda}\right)^{-1}$$

- The mean-square error (MSE) is minimized when
 - X_T is orthogonal [Gao08].
 - The optimal PA scheme with the minimum amount of fading constraint.

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Coherent Network

 Total MSE achieved with ML and MMSE estimators, and with the optimal and equal PA schemes.

+ 3 > < 3</p>

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Mismatched Decoding

• Recall the system model

$$\mathbf{y} = \mathbf{X} \mathbf{\Lambda} \mathbf{h} + \mathbf{z}.$$

• Use the estimated CSI $\hat{\mathbf{h}}$

$$\hat{\mathbf{X}} = \arg\min_{\mathbf{X}_k} \|\mathbf{y} - \mathbf{X}_k \mathbf{\Lambda} \hat{\mathbf{h}} \|^2.$$

• The same diversity order is achieved with imperfect CSI estimation as with perfect CSI.

< 同 > < 国 > < 国 >

System Model Fourier-based DUSTM Power Allocation (PA) in DSTC Optimal Training and Mismatched Decoding in DSTC

Coherent Network

Error performance of DSTC with different types of decoding.
Red lines: Optimal PA, Blue lines: Equal PA.

□ ▶ ▲ □ ▶ ▲ □

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Introduction to Part II

- With full CSI, the relays can beam the retransmitted signal to the destination ⇒ received signal is coherently constructed.
- Early works *only* consider power allocation at the relays for a one-source one-destination network.
- My approach: Find optimal power allocation for a multiple-source multiple-destination network
 - (i) Minimizing the sum relay power with guaranteed quality of service (QoS).
 - (ii) Maximizing the joint SNR margin subject to power constraints at the relays.
 - Apply convex optimization to investigate the problems.
 - Propose simple and fast converging algorithms.

イロト イポト イヨト イヨト

Introduction & System Model Guaranteed QoS SNR Margin Maximization

System Model (in Part II)

Relay R

• N users $(S_n - D_n)$ compete for the power resource at the R relays.

<ロ> (日) (日) (日) (日) (日)

Introduction & System Model Guaranteed QoS SNR Margin Maximization

System Model

• First stage

<ロ> (日) (日) (日) (日) (日)

Introduction & System Model Guaranteed QoS SNR Margin Maximization

System Model

First stage

Second stage

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Instantaneous SNR

• The received signal at the *n*th destination is:

$$y_n = \mathbf{g}_n^{\mathcal{T}} \mathbf{t}_n + z_{d_n} = \mathbf{h}_n^{\mathcal{H}} \mathbf{w}_n s_n + z_n.$$

Instantaneous SNR at destination-n

$$\mathrm{SNR}_n = \frac{\sigma_{S_n}^2 |\mathbf{h}_n^{\mathcal{H}} \mathbf{w}_n|^2}{\sigma_R^2 \|\mathbf{G}_n^{1/2} \mathbf{w}_n\|^2 + \sigma_D^2}$$

• Let p_n be the total relay power allocated for user-n

$$p_n = \mathbb{E}\left[\|\mathbf{t}_n\|^2\right] = \mathbf{w}_n^{\mathcal{H}} \mathbf{D}_n \mathbf{w}_n.$$

Guaranteed QoS

Without Per-Relay Power Constraints

- Minimize the sum relay power with guaranteed QoS.
- Can be performed separately for each user

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Without Per-Relay Power Constraints - Solutions

- Second-order cone programming (SOCP).
- Find *p_n* directly, determine the optimal beamformer **w**_{*n*} accordingly.

$$\mathcal{P}_n(\gamma_n) = \begin{cases} \underset{p_n}{\min \text{minimize}} & p_n \\ \text{subject to} & \sum_{i=1}^R \frac{a_{n,i}p_n}{b_{n,i}+p_n} \geq \gamma_n, \end{cases}$$

where $a_{n,i}$ and $b_{n,i}$ are parameters.

• Simple fixed point iteration

$$p_n^{(t+1)} = \frac{\gamma_n}{\sum_{i=1}^R \frac{a_{n,i}}{b_{n,i}+p_n^{(t)}}} \triangleq f_n(p_n^{(t)}).$$

- 4 同 ト 4 目 ト 4 目 ト

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Convergence

• Fixed point iteration with different starting points.

▶ < ∃ >

Introduction & System Model Guaranteed QoS SNR Margin Maximization

With Per-Relay Power Constraints

- Power constraint at each relay.
- Uniformly minimize the margin P_i/P_i^{max} , denoted as α .

Duy H. N. Nguyen Advisor: Prof. Ha H. Nguyen

Optimization in Wireless Multi-relay Networks

Guaranteed QoS

Without Per-Relay Power Constraints - Solutions

- Second-order cone programming (SOCP).
- Study to dual problem:
 - The Lagrangian, the dual function, and the dual problem.
 - An equivalent virtual uplink channel to the dual problem

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Convergence

< ∃ >

< 17 ▶

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Power Consumption Comparison

 Red lines: without per-relay power constraints vs. Blue lines: with per-relay power constraints.

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Sum Relay Power Constraint

• Jointly maximize the SNR-margin

 $\begin{array}{ll} \underset{\mathbf{w}_{1},\ldots,\mathbf{w}_{N}}{\text{maximize}} & \underset{n}{\min} \frac{\text{SNR}_{n}}{\gamma_{n}} \\ \text{subject to} & P_{\text{relay}} \leq P_{\text{relay}}^{\max}. \end{array}$

• Solutions: bisection method, modified fixed-point iteration to directly find the optimal solution:

$$\tilde{p}_n = \frac{\gamma_n}{\sum_{i=1}^R \frac{a_{n,i}}{b_{n,i} + p_n^{(t)}}}$$

then normalize the result

$$p_n^{(t+1)} = \frac{P_{\text{relay}}^{\max}}{\sum_{l=1}^N \tilde{p}_l}.$$

37

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Convergence

• Convergence of the modified fixed point iteration for each user and the corresponding SNR.

Duy H. N. Nguyen Advisor: Prof. Ha H. Nguyen Optimization in Wireless Multi-relay Networks

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Sum Relay Power Constraint

• Jointly maximize the SNR-margin

 $\begin{array}{ll} \underset{\mathbf{w}_{1},\ldots,\mathbf{w}_{N}}{\operatorname{maximize}} & \underset{n}{\min} \frac{\operatorname{SNR}_{n}}{\gamma_{n}} \\ \text{subject to} & P_{i} \leq P_{i}^{\max}, \ i = 1,\ldots,R. \end{array}$

• Solutions: bisection method, an iterative algorithm to directly find the optimal solution.

<ロ> <同> <同> < 同> < 回> < 回>

Introduction & System Model Guaranteed QoS SNR Margin Maximization

Convergence

▶ < ∃ >

< 同 → < 三

Introduction & System Model Guaranteed QoS SNR Margin Maximization

SNR & Power Consumption Comparison

 Red lines: sum relay power constraint vs. Blue lines: per-relay power constraints.

Summary

- Distributed space-time coding: code design, power allocation, training and mismatched decoding.
- Distributed beamforming for multi-source multi-destination: power minimization with guaranteed QoS at the destinations, SNR margin maximization with power constraints at the relays.

QUESTIONS?

- 4 同 ト - 4 目 ト

Contributions

1	"Power Allocation and Error Performance of Distributed Unitary Space-Time Modulation in Wireless Relay Networks", to appear in IEEE Trans. on Veh. Tech.
2	"Channel Estimation and Performance of Mismatched Decoding in Wireless Relay Networks", <i>submitted to IEEE Trans. on Wireless Comm.</i>
3	"Resource Allocation in Wireless Multiuser Multi-relay Networks", in preparation.
4	"Distributed Beamforming in Relay-Assisted Multiuser Communications", <i>in Proc. IEEE ICC' 09</i> , Jun. 2009.
5	"A Novel Power Allocation Scheme for Distributed Space-Time Coding", in Proc. IEEE ICC' 09, Jun. 2009.
6	"Channel Estimation and Performance of Mismatched Decoding in Wireless Relay Networks", in Proc. IEEE ICC' 09, Jun. 2009.
7	"Power Allocation and Distributed Beamforming Optimization in Relay-Assisted Multiuser Communications", in Proc. IWCMC' 09, Jun. 2009.
8	"Distributed Unitary Space-Time Modulation in Partially Coherent and Noncoherent Relay Networks", in Proc. IPSPCS' 08, Dec. 2008.
9	"Distributed Beamforming in Multiuser Multi-relay Networks with Guaranteed QoS", <i>submitted to Globecom' 09.</i>
10	"SNR Maximization and Distributed Beamforming in Multiuser Multi-relay Networks", submmited to Globecom' 09.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶