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Signals and Systems

Input Output
signal ——— System ——— signal
x[n] y[n]

m Signal
Applied to something that conveys information

v

» Represented as a function of one or more independent variables
» Continuous-time vs. Discrete-time

» Continuous-amplitude vs. Discrete-amplitude

m System: A transformation or operator that maps a input sequence
into an output sequence

y[n] = T(a:[n]) or y(t)= T(m(n))



Signals

Discrete-time signal x[n]
[e§) 1 T
Bw= > [z, P=1lim — Y [z@* (1)
n=-—T

T—o0 2T

n=—00
Some signals have infinite average power, energy or both

A signal is called an energy signal if F, < o

A signal is called an power signal if 0 < Py, < 00

A signal can be an energy signal, a power signal, or neither type

A signal cannot be both an energy signal or a power signal

Examples: z[n] =1, z[n] = sinn, z[n] =n



Some Examples

Time shift: z[n — ng]

Time reversal: x[—n]

Time scaling: z[an]

Periodic signal with period N: z[n] = z[t + N]
Even signal: z[—n] = z[n]

Odd signal: z[—n] = —z(n]

Exponential signal: z[n| = Ce™
» Real-valued exponential vs Complex exponential
» Growing or decaying?
» Periodic or aperiodic?

Real sinusoidal signal: x[n] = A cos(wn + ¢)



Unit Step Function and Unit Impulse

m Unit step function

0, n<0
uln] = 1 n>0

m Unit impulse function

8[n] = uln] — u[n — 1], uln] = ; 8[m]
il |
0 n 0 n

m Some properties:
oo

> Z x[n]d[n — ng] = xz[ng]: sifting property

» z[n] = Z x[k]d[n — k]: signal decomposition

k=—o00



Linearity

m Input-output relationship: y;[n] = T'(z;[n])

m A system is linear if
» T'(az[n]) = aT (z[n])

» T(21[n] + z2[n]) = T(x1[n]) + T (x2[n])

> or y[n] = T(arz1[n] + asaa[n]) = a1y1[n] + azyz[n).

m Examples: linear or not
© Time scaler: y[n] = z[2n)]

Q@ Amplifier: y[n] = 2z[n] + 1
© Accumulator: yn] = Z x[k]
k=—oc0

@ Squarer: y[n] = 2%[n]



Causality and Stability

Causality: Output only depends on values of the input at only the
present and past times

Examples: casual or not
@ Time scaler: y[n] = z[2n] and y[n] = z[n/2)

Q y[n] = sin (z[n])
Stability: Small input lead to responses that do diverge

’x[n” < B for some B < o0 —» ‘y[n” < 0

Examples: stable or not

© y[n] = nafr]
@ yfn] =t
© yfn] = yln — 1 +aln



Time-Invariance

m Time-invariant system: characteristics of the system are fixed over
time

yn] =T(z[n]) —  yln—no) =T (z[n —no))
m Examples: Time-invariant or not
- O y[n] =sinzn]
Q yln| = nz[n]
Q yln| = z[2n]

m Linear time-invariant (LTI) system: good model for many real-life
systems

m Examples: LTI or not
1 n+ng

@yl =5 > ol

k=n—ng



Response in LTI Systems

z[n] = é[n] —— System —— y[n| = h[n]

Impulse response: Response to a unit impulse
Any signal can be expressed as a sum of impulses
oo
zln] = > z[k][n — k]
k=—o0

LTI system: 0[n — k] — h[n — k]

Output signal:



Convolution Operation

Convolution operation: y[n] = x[n] * h[n] = Z z[k|h[n — k]

k=—o00
Commutative: z[n] * h{n] = h[n] * x[n]
Associative: x[n] * (h1[n] * ho[n]) = (z[n] * hi[n]) * ha[n]

Distributive: z[n] * (h1[n] 4+ ha[n]) = x[n] * hi[n] + x[n] * haln|

Examples: Flip, shift, multiply and add

Ll i - il
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LTI System Properties and Impulse Response

Any LTI system can described by its impulse response
Memoryless: h[n] = ad[n]

Causal: hln] =0, Vn <0

Stable: Z |h[n]| < oo

n=—oo
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Continuous time Signals

Unit step function

0, t<0
u(t):{l t>0

Unit impulse function or Dirac delta function

st = 1) u(t) = /_ " s
1

S

1 t 1 n

d(t) =0fort#0
d(t) in unbounded at t =0

/ d(t)dt =1 and / x(t)0(t — to)dt = x(to): sifting property

—00 —0o0
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Response in LTI Systems
x(t) = 6(t) —— System —— y(t) = h(t)

Impulse response: Response to a unit impulse

Any continuous-time signal can be expressed as

x(t) = /00 x(1)o(t — 7)dr

—00

LTI system: 8(t — ) = h(t — 7)
Output signal:

y(t) = /_Z 2Pt —7)dr 2 w(t) * h(t)
Examples: z(t) = e~ *u(t), h(t) = u(t). Then, y(t) = = [1—e %]



Response to Complex Exponentials

Input signal: x(t) = e®t

Output signal: .
y(t) = eSt/ h(r)e *Tdr = H(s)eSt

—00
H(s) at s: eigenvalue associated with the eigenfunction e®
Input signal: z[n] = 2"
Output signal:
o0
yln] = 2" Z hlk]z=F = H(z)2"

k=—o00

H(z) at z: eigenvalue associated with the eigenfunction 2"
Why is eigenfunction is important?

Can any signal be represented as a summation of complex
exponentials?
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Fourier Series |

Periodic signal with period T z(t) = z(t + T)

wo = 27 /T is called the “angular fundamental frequency”
fo=1/T is called the “fundamental frequency”
Harmonically related complex exponentials: @ (t) = elF«wot

Assume a periodic signal z(t) can be represented as

o
Synthesis form :  x(t) = Z ageltot

k=—00

Coefficients a;'s

1 .
Analysis form: aj = / x(t)e IFwotdy
T Jr
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Fourier Series Il

m Fourier Analysis using fundamental frequency fy = wp/(27)
» Synthesis form:

o0
Z apeiF2mfot
k=—oc0
> Analysis form:
1 [T/2 '
ap = —/ x(t)e k2ot qy
T J_7/2
m Parseval’s theorem
T/2 00
2
o[ ama= Y fal
T/2 oo

m Examples: A periodic square wave
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Fourier Transform

m A periodic square wave & Fourier Coefficients

2(t) = 1, Jt<Th 0 — 2 sin(kwoT1)
10, Th<lt|<T/2 T kwoT
m Envelop function
Tay — 2sinwT]
w w=kwq

m Fourier series coefficients and their envelop with different values of
T with T7 fixed

m T — oo: Fourier series coefficients approaches the envelope
function.
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Fourier Transform |

m Aperiodic signal: can be treated as a periodic signal with T' — oo

m The envelop function is called the Fourier Transform

m Derivations of Fourier Transform
» Period padding for a aperiodic signal z(t) with finite duration

x(t)

I —adan

t
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Fourier Transform ||

» Express Z(t) using Fourier Series

oo
Z(t) = Z apelFeot

k=—o00

where the Fourier Series coefficients are

1 . 1 [ .
ay = T/ch(t)ejk“’otdt =T /_OO x(t)elFotdt

t)e 3“dt: Analysis Equation of Fourier

—~

Define X (jw) = / x

Transform, then a;, = —X (jw). Thus,

M|~

- N . N I
Z(t) = Z TX(Jk;wo)ejk ot = Z %X(kao)e]k AN

k=—o0 c=—00
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Fourier Transform Il

» AsT — 00, wg — 0

o)
1 : * 1 i
i E i 3 Jjkwot — X (i wt
wl(}gok 27TX(ka0)e o0 [m 2m (jew)e du

As Z(t) — x(t), Synthesis Equation of Fourier Transform of z(t):

1 o .
x(t) = %/ X (jw)etdw

m Fourier Transform can be applied to periodic and aperiodic signals.
Fourier Series can only be applied to periodic signals

m Examples: z(t) = e~ %u(t) for a > 0
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Properties of Fourier Transform |

Linearity: if z1(t) «+— X1 (jw) and z2(t) «+— Xa(jw)

alxl(t) + agxg(t) +— a1Xq (Jw) + GQXQ(jw)

Time shifting: z(t — tg) +— e %0 X (jw)
Conjugate: z*(t) «— X*(—jw)
Differentiation and Integration:
d —x(t) +— jwX(jw)
dt J J
t 1
/ z(7)dT ¢— —X(jw) + 7X(0)d(w)
o jw
1 jw
Time scaling: z(at) +— —X
la] " \ a
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Properties of Fourier Transform Il

Parseval Equality: / ‘ ‘ dt = / Jw)}de

Duality: Suppose z(t) «+— X (jw) and y(t) +— Y (jw). If y(¢) has
the shape of X (jw), then Y (jw) has the shape of z(t)

Example: 6(t) «+— 1

Convolution: z(t) * h(t) «— X (jw)H (jw)

Multiplication: 2()h(t) +— 5= X (jw) * H (jw)

Fourier Transform can often be denoted as X (f) instead of X (jw)

_ng:/mx@miﬁﬂm

—00

:/mxmwww
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Frequency Transfer Function
oo

LTI system: y(t) = x(t) x h(t) = / x(T)h(t — 7)dT

Fourier transform: Y (f) = X(f)H(f)

Fourier transform of the impulse response function
o0
H(f) = / h(t)e ¥/t dt
—0o0
is called frequency transfer function or the frequency response

\ He’D
|H )|: magnitude response

» 6(f): phase response

Examples: z(t) = A cos 27 fot, output will be

— A‘H(fo)‘ cos [27Tfot + 9(f0)]
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Distortionless Transmission

Ideal system with constant delay and amplifier y(t) = Kz(t — tg)
Fourier Transform from both sides: Y (f) = KX (f)e 3?7fto
Transfer function

H(f) = Ko i2nfto

Ideal distortionless transmission: constant magnitude response and
its phase shift must be linear with frequency

In practice, a signal will be distorted by some parts of a system

Phase or amplitude correction (equalization) may be required for
correction
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Ideal Filter

m No ideal network exists: ‘H(f)| = K, Vf — infinite bandwidth
m Truncated network: all frequencies in [fl,fu] without distortion
m Passband: f; < f < fy, bandwidth W; = f, — f;

|H(f)]

—fu —=fi fi Ju S
|H(f)]

*fu fl fu f
|H(f)]

—fu —fi fi fu—roo f
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Ideal Bandpass Filter

Constant magnitude response

1 for |f] < fu
‘H(f)‘_{o for [1] >

Linear phase response: e I0Uf) = g=i27fto
Impulse response of the ideal low-pass filter

he) =7 {H(} = [ T H(pS

sin 27 f, (t — to)

= 2/u 27 fult — to)

What is wrong with this impulse response function?

Realizable filters: Butterworth filter, Raised-cosine filter, etc
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