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Definitions

Definition 1

A binary operation % on a set G is a rule that for each a € G,b € G
assigns ¢ = a * b, such that c € G.

Definition 2
A group consists of a set G and a binary operation x with the following
properties:
@ Associativity: (axb)xc=ax (bxc) fora,b,c € G.
@ Existence of Identity: There exists e € GG such that
axe=ce¢*xa=a, foralla € Q.

© Existence of Inverse: For each a € G, there exists a unique element

ateGsuchthataxa t=a1lxa=cec.
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Properties of Groups

Theorem 1
The identity element is unique.

Proof?

Theorem 2

The inverse of an element a in group is unique.

Proof?
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Definitions

Definition 3

A group is said to be commutative or abelian if also satisfies:
Commutativity: For all a,b € G,a*xb="0x*a.

m If a group is commutative, then the group operation is often
represented as “+”
m Examples of groups:

» The set of integers forms a commutative group under addition.

» The set of integers does not form a group under multiplication.
Why?

» The set of rational numbers excluding zero forms a group under
multiplication.

» The set of (n x n) matrices with real elements forms a commutative
group under matrix addition
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Definitions

Definition 4
The order or cardinality of a group is the number of elements in the
group.

Definition 5

If the order or a group is finite, the group is a finite group. Otherwise,
it is an infinite group.
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Finite groups using modulo arithmetic

m In ECC, we are concerned with finite groups.

m Construction of finite groups using modulo arithmetic on integers:

» The result of addition modulo m of a,b € GG is the remainder, ¢, of
a + b divided by m, where 0 < c<m — 1:

a+b=k-m+c,
where k is the largest integer such that
k-m < (a+b).

» Modulo addition can be expressed in several ways. We will start with
a more-descriptive form than in the text:

a+b=cmodm.
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Construction of Groups Using Modulo Addition

m Define G by G ={0,1,2,...,m — 1}
m Definec=aHlbby a+b=cmodm
m Then (G,H) is a group:

» aHbis an integer between 0 and m — 1, so G is closed under H
» M is associative

> ldentity element under B is zero a HO =a, aBb=0a = b= km,
but b = km = b = 0 (identity is unique)

» Forain G, m—aisalsoin G. Let c=aBm —a. Then
a+m—a=cmodm
m = cmodm
=>m=k-m+c=>c=0
(Inverses are in G.)
» This defines an additive group over the integers mod m
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Construction of Groups Using Modulo Multiplication

m Suppose we select a prime number p, and let G = {1,2,...,p — 1}.
m Defined by c=aldbif a-b=cmod p.
m (G,[) is then a group of order p — 1
Claim: (G,[3) is a group of order p — 1
m Associativity
m Identity: clearly a1 =a

m Inverse: Let 7 € GG be an element for which we want to find an
inverse by Euclid's Theorem, 3 a, b such that

a-1+b-p=1

and a, p are relatively prime. We then have a -7 = —b-p+ 1. What
next?
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Subgroup

Definition 6
Subgroup: If H is a nonempty subset of G and H is closed under * and
satisfies all the conditions of a group, then H is a subgroup of G.

Example: G: rational numbers under real addition. H: integers under
real addition

Theorem 3

Let G be a group under binary operation x. Let H be a non-empty
subset of G. Then H is a subgroup of G if the following conditions hold:

m H is closed under %

m For any element a in H, the inverse of a is also in H.

Proof?
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Coset

Definition 7

Let H be a subgroup of G with binary operation . Let a be an element
of G. Then the set of elements ax H = {axh:h € H} is called a left
coset of H, the set of elements H xa = {h*a: h € H} is called a right
coset of H.

For a commutative group, left and right cosets are identical. Hereafter,
we just call them cosets.

Theorem 4

Let H be a subgroup of a group G under binary operation x. No two
elements in a coset of H are identical.

Theorem 5

Let H be a subgroup of a group G under binary operation x. No two
elements in two different cosets of H are identical.
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Definitions: Rings

Definition 8

A ring is a collection of elements R with two binary operations, usually
denoted “+" and " with the following properties:

Q (R,+) is a commutative group. The additive identity is labeled
11071.
@ - is Associative: (a-b)-c=a-(b-¢)

© - Distributes over +.

a-(b+c)=(a-b)+(a-c).
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Definitions: Rings

Definition 9
A ring is a commutative ring if - is commutative: a -b=1b- a. J

Definition 10
A ring is a ring with identity if - has an identity, which is labeled “1". J

Groups and Rings 13



© Fields

Fields
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Definitions: Fields

Definition 11

A field is a commutative ring with identity in which every element has
an inverse under -.

m Essentially, a field is:

> a set of elements I

» with two binary operations + (addition) and - (multiplication).

» “+" " and inverses can be used to do addition, subtraction,
multiplication, and division without leaving the set.
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Definitions: Fields

Definition 12

Formal definition: A field consists of a set F' and two binary operations
+ and - that satisfy the following properties:

@ F forms a commutative group under addition (+). The additive
identity is labeled “0".

@ F — {0} forms a commutative group under multiplication (-). The
multiplicative identity is labeled "“1".

© The operation “" distributes over +:

a-(b+c)=(a-b)+ (a-c).
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Fields: Examples

Examples of Fields
m The rational numbers

m The integers do not form a field because they do not form a group
under “.". (There are no multiplicative inverses.)

m The real numbers
m The complex numbers

Observe that they are all infinite fields.

Fields
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Properties of Fields

m Property |. For every element ¢ in a field, a-0=0-a = 0.
Proof?

m Property Il. For any two nonzero elements @ and b in the field,
a-b#0.
Proof: The nonzero elements are closed under -.

m Property lll. If a- b =0 and a # 0, then b = 0.
Proof: From Property II.

m Property IV. Fora #0, a-b=a-cimplies b = c.

Proof: Multiply each side by a=!.
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Finite Fields

m Finite fields are more commonly known as Galois Fields after their
discoverer

m A Galois field with p members is denoted GF(p)

m Every field must have at least 2 elements:

> the additive identity ‘0’, and
> the multiplicative identity ‘1’

Fields

19



Binary Fields

m There exists a finite field with 2 elements: the binary field, denoted

GF(2)

» FF={0,1}

> + defined as modulo—2 addition
+]10 1
0|0 1
111 0

> - defined as modulo—2 multiplication
10 1
0|0 O
110 1

> It is easy to verify that - distributes of + by trying each of the 8
possible combinations
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GF(p)

Given a prime number p, the integers {0,1,2,...,p — 1} form a field
under modulo p addition and multiplication.

m {0,1,...,p— 1} is a commutative group under mod p addition
m {1,...,p— 1} is a commutative group under mod p multiplication

m modulo multiplication distributes over modulo addition
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Examples of GF(3)

m The next smallest group after GF(2) is GF(3),
F={0,1,2}
» + defined by

> - defined by

Fields
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Fields

Constructions of Finite Fields

Modulo arithmetic can be used to construct fields of size p, where p
is prime.

Modulo arithmetic cannot be used to construct fields of size p if p
is not prime.

Finite fields GF(¢) do not exist for all g.

However, finite fields GF(¢) do exist if ¢ = p™, where p is prime
and m > 1.

GF(p™) is called an extension field of GF(p) because it is
constructed as a vector space over GF(q).
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Subtraction and Division in Fields

m Subtraction over the field: to subtract b from a, find the additive
inverse of b (call it —b) and add it to a:

a—b=a+(-b).
m Division over the field can be defined in the same way: to divide a
by b, first find the multiplicative inverse of b (call it b — 1), and
multiply it by a:

a/b=a- bt
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Definition: Vector Space

Definition 13

A vector space consists of:
m V, a set of elements called vectors;
m I, a field of elements called scalars;

m +, a binary operatoronV 2 Vv, v, €V , v +uv, =v €V,
called vector addition;

m -, a binary operator on ' and V
ifaeF,veV,a -v=w €V called scalar multiplication;

that satisfy the five properties below.
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Properties of Vector Spaces

(i) V is a commutative group under +
(i) Vae F,veV,a-veV
(closed under scalar multiplication)
(iii) Yu,v € V and a,b € F

<

> Q
S

(- distributes over +)
(iv) YveV,a,be F,
(a-b)-v=a-(b v)
(- is associative)
(v) The multiplier identity 1 € F' is the identity for scalar multiplication
1-v=mw.
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Properties of Vector Spaces

The additive identity of V' is denoted by 0.
Additional Properties:

N0-v=0Yv eV
) c-0=0
) (=¢)-v=c-(-v) = —(c-v)
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Common Vector Spaces

m n-tuples (v) = (vo, V1, ..., Vpn_11)
» eachv; € F

m + defined by u = (ug,uq,...,un—1) then
u+v=(up+vo,ur +v1,...,Up—1+ Vp_11)
m - defined by a € F, a-v = (avy, avy,...,av,_1)

We will focus on F' = GF(2) or GF(2™).
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Linear Combinations

Definition 14

Let vy,vs,...,v, € V and a1,as,...,an, € F. Then

a1v; + aguy + -+ - + apv,, € V is a linear combination of vy, v, ..., vy.
Definition 15

If G = {vg,vq, - ,v,} is a collection of vectors > the linear

combinations of vectors in G is all vectors in a vector space V', then G is
a spanning set for V

v
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Example

Let V, denote the vector space of n—tuples whose elements € GF(2)

(0000) (0001) (0010) (0011)
v, _ (0100) (0101) (0110) (0111)
47 (1000) (1001) (1010) (1011)

(1100) (1101) (1110) (1111)

Then G = {(1000), (0110), (1100), (1001), (0011)} is a spanning set for
V (G spans V).
Note: The vectors in G are linearly dependent.
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Linearly Independent

Definition 16

m A set of vectors vy,v,, ..., in a vector space V over a field F' are
linearly dependent if daq, a9, ...,ar € F
3 a1v; + a2vy + - - - + agvy, = 0, and at least one a; # 0.

m Otherwise v,,v,, ...,v, are linearly dependent.

Ex:(cont) The vectors in G are linearly dependent because (for example)
(0110) + (1100) + (0011) = (1001)

(i.e., the sum of these four is Q) Vectors are linearly dependent if one can
be expressed as the linear combination of the others. We can delete
(1001) from G and still have a spanning set for V. However, we cannot
delete any more vectors and still have a spanning set for V.
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Definitions

Definition 17
A spanning set for V is a basis for V' if it has minimum cardinality. J

Example: Bases for V Clearly {(1000), (0110), (1100), (0011)} is a
basis for V.

A common basis for V,, is the canonical basis.

Example: Canonical basis for V;: {(1000), (0100), (0010), (0001)}

The dimension of a vector space V , written dim (V'), is the cardinality

Definition 18
of a basis for V. }
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Definitions

Theorem 6

Let {vp,v1,...,vx,_1} be a basis for a vector space V. Foreveryv €V ,
there is a unique representation

v =agvy+ a1v; + -+ ap_1vp_;- (1)
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Definitions

Definition 19
If V is a vector space over a field F and S C V is also a vector space
over F', then S is a subspace of V.

Theorem 7

(Theorem 2.18) Let S C V, S # ) then S is a subspace of V' if:
DVu,ve S, u+veSs.

i)Vae Flue S,a-ues

Theorem 8
(Theorem 2.19) Let vy, vy, - ,u, € V over F. The set of all linear
combinations of vy, vs, - ,v;, forms a vector subspace of V.

Vector Spaces
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Inner Product

Definition 20

Let u,v € V , a vector space of n—tuples over a field F'. Then the inner
(or dot) product of w and v is

UV = UVy + ULV + - F Up—1Up—1
n—1
= § UiVq,
i=0

which is a scalar.
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Properties of Inner Product

(i) Commutativity = u-v
(ii) Associativity = (a - u) - (u-v)
(i) Distributivity over + = u- (vt w)=u-v+u-w

Definition 21

If u,v € V (a vector space), and uw-v = 0, then uw and v are orthogonal. J

Vector Spaces 37



Null Space

Definition 22
m Let S be a dim k subspace of V,,. Let Sy be all vectors inV,, > if
u€eS, ve Sy u-v=0.

m Then Sy is also a subspace of V,,, and Sy is called the null space or
dual space of S.
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Null Space

Proof that Sy is a subspace of V,,: Sy is nonempty, since
0-u=0,YVueV, =0€e5,.
Suppose v € Sgw € Sg. Thenv-u=0and w-u=0u € S
() (v+w) - u=w-u)+(w-u)=0
=v+weYy
(i) Foranya € F, (a-w) - u=a-(w-u)=a-0=0
=a-wE Iy
(i) & (ii) = any linear combination of vectors in Sy is in Sy.
= S, is a subspace of V.

Vector Spaces
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Null Space

Theorem 9

The dimension theorem: Let S be a finite dimensional vector subspace of
V and let S; be the corresponding dual space. Then

dim(S) + dim(Sy) = dim(V).

Vector Spaces 40



Matrices over GF(Q)/GF(2)

k x n matrix over GF(q)
m k rows
m n columns
= gij € GF(q)

goo go1 s go,n—1
G- 9?0 9?1 s 91,7'171
9k-1,0 Gk—11 *°° YGk—1mn-1

G is also abbreviated as [g;;].
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Matrices over GF(Q)/GF(2)

Let g, denotes the vector of the i row

g9i=1[gi0 90 - Gin1] (2)

Then,

o)
Il
—
w
~
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Matrices over GF(Q)/GF(2)

If the & rows 9yr -9, are linearly independent, then:
m There are ¢* linear combination of the g,

m These ¢* vectors form a k—dimensional vector space over the
n—tuples over GF(q), called the row space of G.
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Matrices over GF(Q)/GF(2)

Any matrix G may be transformed by elementary row operations
(swapping rows, adding rows) into a matrix G’ that has the same row
space.

If S is the row space of GG,,,,, then the null space Sy has dim n — k.

Let hg, Ay, ..., h,_j_; denotes n — k linearly independent vectors in Sy
and
hg
hy
H= . (4)
hnfkfl

Then the row space of H is Sy.
The row space of G is the null space of H, and vice versa.
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More Matrix Operations

Matrix addition and multiplication is as expected:
Addition is componentwise for 2 matrices of the same size:

aij] + [bij] = [aij + bij] (5)

Multiplication of a & x n matrix A by an n x [ matrix B yields a k x [
matrix C.

Cij = a; * b; (6)
where
a; is the i'" row of A
b; is the 4t column of B.
n—1
Cij = Z jtby; (7)
t=0
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More Matrix Operations

GT = transpose of G = n x k matrix whose columns are the rows of G.

_ _ 1 in (4,4) positions
I, = k x k ldentity matrix =
0 elsewhere

Example:
1 000
01 00
Li=19 01 0
0 0 0 1

Submatrix of G = matrix created by removing rows and/or columns
from G.
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