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Definitions

Definition 1

A binary operation ∗ on a set G is a rule that for each a ∈ G, b ∈ G
assigns c = a ∗ b, such that c ∈ G.

Definition 2

A group consists of a set G and a binary operation ∗ with the following
properties:

1 Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for a, b, c ∈ G.

2 Existence of Identity: There exists e ∈ G such that
a ∗ e = e ∗ a = a, for all a ∈ G.

3 Existence of Inverse: For each a ∈ G, there exists a unique element
a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.
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Properties of Groups

Theorem 1

The identity element is unique.

Proof?

Theorem 2

The inverse of an element a in group is unique.

Proof?
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Definitions

Definition 3

A group is said to be commutative or abelian if also satisfies:
Commutativity: For all a, b ∈ G, a ∗ b = b ∗ a.

If a group is commutative, then the group operation is often
represented as “+”

Examples of groups:
I The set of integers forms a commutative group under addition.
I The set of integers does not form a group under multiplication.

Why?
I The set of rational numbers excluding zero forms a group under

multiplication.
I The set of (n× n) matrices with real elements forms a commutative

group under matrix addition
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Definitions

Definition 4

The order or cardinality of a group is the number of elements in the
group.

Definition 5

If the order or a group is finite, the group is a finite group. Otherwise,
it is an infinite group.
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Finite groups using modulo arithmetic

In ECC, we are concerned with finite groups.

Construction of finite groups using modulo arithmetic on integers:
I The result of addition modulo m of a, b ∈ G is the remainder, c, of

a+ b divided by m, where 0 ≤ c ≤ m− 1:

a+ b = k ·m+ c,

where k is the largest integer such that

k ·m < (a+ b).
I Modulo addition can be expressed in several ways. We will start with

a more-descriptive form than in the text:

a+ b ≡ c mod m.
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Construction of Groups Using Modulo Addition

Define G by G = {0, 1, 2, . . . ,m− 1}

Define c = a� b by a+ b ≡ c mod m

Then (G,�) is a group:
I a� b is an integer between 0 and m− 1, so G is closed under �

I � is associative

I Identity element under � is zero a� 0 = a, a� b = a⇒ b = km,
but b = km⇒ b = 0 (identity is unique)

I For a in G, m− a is also in G. Let c = a�m− a. Then

a+m− a ≡ c mod m

m ≡ c mod m

⇒ m = k ·m+ c⇒ c = 0

(Inverses are in G.)

I This defines an additive group over the integers mod m
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Construction of Groups Using Modulo Multiplication

Suppose we select a prime number p, and let G = {1, 2, . . . , p− 1}.
Define � by c = a� b if a · b ≡ c mod p.

(G,�) is then a group of order p− 1

Claim: (G,�) is a group of order p− 1

Associativity

Identity: clearly a� 1 = a

Inverse: Let i ∈ G be an element for which we want to find an
inverse by Euclid’s Theorem, ∃ a, b such that

a · i+ b · p = 1

and a, p are relatively prime. We then have a · i = −b · p+ 1. What
next?
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Subgroup

Definition 6

Subgroup: If H is a nonempty subset of G and H is closed under ∗ and
satisfies all the conditions of a group, then H is a subgroup of G.

Example: G: rational numbers under real addition. H: integers under
real addition

Theorem 3

Let G be a group under binary operation ∗. Let H be a non-empty
subset of G. Then H is a subgroup of G if the following conditions hold:

H is closed under ∗
For any element a in H, the inverse of a is also in H.

Proof?
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Coset

Definition 7

Let H be a subgroup of G with binary operation ∗. Let a be an element
of G. Then the set of elements a ∗H , {a ∗ h : h ∈ H} is called a left
coset of H; the set of elements H ∗ a , {h ∗ a : h ∈ H} is called a right
coset of H.

For a commutative group, left and right cosets are identical. Hereafter,
we just call them cosets.

Theorem 4

Let H be a subgroup of a group G under binary operation ∗. No two
elements in a coset of H are identical.

Theorem 5

Let H be a subgroup of a group G under binary operation ∗. No two
elements in two different cosets of H are identical.
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Definitions: Rings

Definition 8

A ring is a collection of elements R with two binary operations, usually
denoted “+” and “·” with the following properties:

1 (R,+) is a commutative group. The additive identity is labeled
“0”.

2 · is Associative: (a · b) · c = a · (b · c)
3 · Distributes over +.

a · (b+ c) = (a · b) + (a · c) .
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Definitions: Rings

Definition 9

A ring is a commutative ring if · is commutative: a · b = b · a.

Definition 10

A ring is a ring with identity if · has an identity, which is labeled “1”.
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Definitions: Fields

Definition 11

A field is a commutative ring with identity in which every element has
an inverse under ·.

Essentially, a field is:

I a set of elements F
I with two binary operations + (addition) and · (multiplication).
I “+”,“·”, and inverses can be used to do addition, subtraction,

multiplication, and division without leaving the set.
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Definitions: Fields

Definition 12

Formal definition: A field consists of a set F and two binary operations
+ and · that satisfy the following properties:

1 F forms a commutative group under addition (+). The additive
identity is labeled “0”.

2 F − {0} forms a commutative group under multiplication (·). The
multiplicative identity is labeled “1”.

3 The operation “·” distributes over +:

a · (b+ c) = (a · b) + (a · c) .
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Fields: Examples

Examples of Fields

The rational numbers

The integers do not form a field because they do not form a group
under “·”. (There are no multiplicative inverses.)

The real numbers

The complex numbers

Observe that they are all infinite fields.

Fields 17



Properties of Fields

Property I. For every element a in a field, a · 0 = 0 · a = 0.
Proof?

Property II. For any two nonzero elements a and b in the field,
a · b 6= 0.
Proof: The nonzero elements are closed under ·.

Property III. If a · b = 0 and a 6= 0, then b = 0.
Proof: From Property II.

Property IV. For a 6= 0, a · b = a · c implies b = c.
Proof: Multiply each side by a−1.
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Finite Fields

Finite fields are more commonly known as Galois Fields after their
discoverer

A Galois field with p members is denoted GF(p)

Every field must have at least 2 elements:
I the additive identity ‘0’, and
I the multiplicative identity ‘1’
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Binary Fields

There exists a finite field with 2 elements: the binary field, denoted
GF(2)

I F = {0, 1}
I + defined as modulo–2 addition

+ 0 1
0 0 1
1 1 0

I · defined as modulo–2 multiplication

· 0 1
0 0 0
1 0 1

I It is easy to verify that · distributes of + by trying each of the 8
possible combinations
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GF (p)

Given a prime number p, the integers {0, 1, 2, . . . , p− 1} form a field
under modulo p addition and multiplication.

{0, 1, . . . , p− 1} is a commutative group under mod p addition

{1, . . . , p− 1} is a commutative group under mod p multiplication

modulo multiplication distributes over modulo addition
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Examples of GF (3)

The next smallest group after GF(2) is GF(3),
F = {0, 1, 2}

I + defined by

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

I · defined by

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1
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Constructions of Finite Fields

Modulo arithmetic can be used to construct fields of size p, where p
is prime.

Modulo arithmetic cannot be used to construct fields of size p if p
is not prime.

Finite fields GF(q) do not exist for all q.

However, finite fields GF(q) do exist if q = pm, where p is prime
and m > 1.

GF(pm) is called an extension field of GF(p) because it is
constructed as a vector space over GF(q).
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Subtraction and Division in Fields

Subtraction over the field: to subtract b from a, find the additive
inverse of b (call it −b) and add it to a:

a− b = a+ (−b) .

Division over the field can be defined in the same way: to divide a
by b, first find the multiplicative inverse of b (call it b− 1), and
multiply it by a:

a/b = a · b−1.
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Definition: Vector Space

Definition 13

A vector space consists of:

V , a set of elements called vectors;

F , a field of elements called scalars;

+, a binary operator on V 3 ∀v1, v2 ∈ V , v1 + v2 = v ∈ V ,
called vector addition;

·, a binary operator on F and V
if a ∈ F , v ∈ V , a · v = w ∈ V called scalar multiplication;

that satisfy the five properties below.
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Properties of Vector Spaces

(i) V is a commutative group under +

(ii) ∀a ∈ F , v ∈ V , a · v ∈ V
(closed under scalar multiplication)

(iii) ∀u, v ∈ V and a, b ∈ F

a · (u+ v) = a · u+ a · v
(a+ b) · v = a · v + b · v

(· distributes over +)

(iv) ∀v ∈ V , a, b ∈ F ,

(a · b) · v = a · (b · v)

(· is associative)

(v) The multiplier identity 1 ∈ F is the identity for scalar multiplication

1 · v = v.
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Properties of Vector Spaces

The additive identity of V is denoted by 0.
Additional Properties:

I) 0 · v = 0 ∀v ∈ V

II) c · 0 = 0

III) (−c) · v = c · (−v) = − (c · v)
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Common Vector Spaces

n-tuples (v) = (v0, v1, . . . , vn−11)
I each vi ∈ F

+ defined by u = (u0, u1, . . . , un−1) then
u+ v = (u0 + v0, u1 + v1, . . . , un−1 + vn−11)

· defined by a ∈ F , a · v = (av0, av1, . . . , avn−1)

We will focus on F = GF (2) or GF (2m).
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Linear Combinations

Definition 14

Let v1, v2, . . . , vn ∈ V and a1, a2, . . . , an ∈ F . Then
a1v1 + a2v2 + · · ·+ anvn ∈ V is a linear combination of v1, v2, . . . , vn.

Definition 15

If G = {v0, v1, · · · , vn} is a collection of vectors 3 the linear
combinations of vectors in G is all vectors in a vector space V , then G is
a spanning set for V
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Example

Let Vn denote the vector space of n–tuples whose elements ∈ GF (2)

V4 =

(0000) (0001) (0010) (0011)
(0100) (0101) (0110) (0111)
(1000) (1001) (1010) (1011)
(1100) (1101) (1110) (1111)

Then G = {(1000), (0110), (1100), (1001), (0011)} is a spanning set for
V (G spans V ).
Note: The vectors in G are linearly dependent.
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Linearly Independent

Definition 16

A set of vectors v1, v2, . . . , vk in a vector space V over a field F are
linearly dependent if ∃a1, a2, . . . , ak ∈ F
3 a1v1 + a2v2 + · · ·+ akvk = 0, and at least one ai 6= 0.

Otherwise v1, v2, . . . , vk are linearly dependent.

Ex:(cont) The vectors in G are linearly dependent because (for example)

(0110) + (1100) + (0011) = (1001)

(i.e., the sum of these four is 0) Vectors are linearly dependent if one can
be expressed as the linear combination of the others. We can delete
(1001) from G and still have a spanning set for V . However, we cannot
delete any more vectors and still have a spanning set for V .
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Definitions

Definition 17

A spanning set for V is a basis for V if it has minimum cardinality.

Example: Bases for V4 Clearly {(1000), (0110), (1100), (0011)} is a
basis for V4.
A common basis for Vn is the canonical basis.
Example: Canonical basis for V4: {(1000), (0100), (0010), (0001)}

Definition 18

The dimension of a vector space V , written dim (V ), is the cardinality
of a basis for V .
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Definitions

Theorem 6

Let {v0, v1, . . . , vk−1} be a basis for a vector space V . For every v ∈ V ,
there is a unique representation

v = a0v0 + a1v1 + · · ·+ ak−1vk−1. (1)
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Definitions

Definition 19

If V is a vector space over a field F and S ⊂ V is also a vector space
over F , then S is a subspace of V .

Theorem 7

(Theorem 2.18) Let S ⊂ V , S 6= ∅ then S is a subspace of V if:
i) ∀u, v ∈ S, u+ v ∈ S.
ii) ∀a ∈ F, u ∈ S, a · u ∈ S

Theorem 8

(Theorem 2.19) Let v1, v2, · · · , vk ∈ V over F . The set of all linear
combinations of v1, v2, · · · , vk forms a vector subspace of V .

Vector Spaces 35



Inner Product

Definition 20

Let u, v ∈ V , a vector space of n–tuples over a field F . Then the inner
(or dot) product of u and v is

u · v = u0v0 + u1v1 + · · ·+ un−1vn−1

=
n−1∑
i=0

uivi,

which is a scalar.
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Properties of Inner Product

(i) Commutativity ⇒ u · v = v · u

(ii) Associativity ⇒ (a · u) · v = a · (u · v)

(iii) Distributivity over + ⇒ u · (v + w) = u · v + u · w

Definition 21

If u, v ∈ V (a vector space), and u · v = 0, then u and v are orthogonal.
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Null Space

Definition 22

Let S be a dim k subspace of Vn. Let Sd be all vectors in Vn 3 if
u ∈ S, v ∈ Sd, u · v = 0.

Then Sd is also a subspace of Vn, and Sd is called the null space or
dual space of S.

Vector Spaces 38



Null Space

Proof that Sd is a subspace of Vn: Sd is nonempty, since
0 · u = 0, ∀u ∈ Vn ⇒ 0 ∈ Sd.
Suppose v ∈ Sd,w ∈ Sd. Then v · u = 0 and w · u = 0∀u ∈ S

(i) (v + w) · u = (v · u) + (w · u) = 0
⇒ v + w ∈ Sd

(ii) For any a ∈ F , (a · w) · u = a · (w · u) = a · 0 = 0
⇒ a · w ∈ Sd

(i) & (ii) ⇒ any linear combination of vectors in Sd is in Sd.
⇒ Sd is a subspace of V .
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Null Space

Theorem 9

The dimension theorem: Let S be a finite dimensional vector subspace of
V and let Sd be the corresponding dual space. Then

dim(S) + dim(Sd) = dim(V ).
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Matrices over GF(Q)/GF(2)

k × n matrix over GF (q)

k rows

n columns

gi,j ∈ GF (q)

G =


g00 g01 · · · g0,n−1
g10 g11 · · · g1,n−1

...
...

. . .
...

gk−1,0 gk−1,1 · · · gk−1,n−1


G is also abbreviated as [gij ].
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Matrices over GF(Q)/GF(2)

Let g
i

denotes the vector of the ith row

gi =
[
gi0 gi1 · · · gi,n−1

]
(2)

Then,

G =


g
0

g
1
...

g
k−1

 (3)
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Matrices over GF(Q)/GF(2)

If the k rows g
0
, . . . , g

k−1 are linearly independent, then:

There are qk linear combination of the g
i

These qk vectors form a k–dimensional vector space over the
n–tuples over GF (q), called the row space of G.
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Matrices over GF(Q)/GF(2)

Any matrix G may be transformed by elementary row operations
(swapping rows, adding rows) into a matrix G′ that has the same row
space.
If S is the row space of Gn×n, then the null space Sd has dim n− k.
Let h0, h1, . . . , hn−k−1 denotes n− k linearly independent vectors in Sd

and

H =


h0
h1
...

hn−k−1

 (4)

Then the row space of H is Sd.
The row space of G is the null space of H, and vice versa.
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More Matrix Operations

Matrix addition and multiplication is as expected:
Addition is componentwise for 2 matrices of the same size:

[aij ] + [bij ] = [aij + bij ] (5)

Multiplication of a k × n matrix A by an n× l matrix B yields a k × l
matrix C.

cij = ai · bj (6)

where
ai is the ith row of A
bj is the jth column of B.

cij =

n−1∑
t=0

aitbtj (7)
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More Matrix Operations

GT = transpose of G = n× k matrix whose columns are the rows of G.

Ik = k × k Identity matrix =

{
1

0

in (i, i) positions

elsewhere

Example:

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Submatrix of G = matrix created by removing rows and/or columns
from G.
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