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Abstract—This paper examines a CoMP system where multi-
ple base-stations (BS) employ coordinated beamforming to serve
multiple mobile-stations (MS). Under the dynamic point selec-
tion mode, each MS can be assigned to only one BS at any time.
This work then presents a solution framework to optimize the
BS associations and coordinated beamformers for all MSs. With
target signal-to-interference-plus-noise ratios at the MSs, the
design objective is to minimize either the weighted sum transmit
power or the per-BS transmit power margin. Since the original
optimization problems contain binary variables indicating the
BS associations, finding their optimal solutions is a challenging
task. To circumvent this difficulty, we first relax the original
problems into new optimization problems by expanding their
constraint sets. Based on the nonconvex quadratic constrained
quadratic programming framework, we show that these relaxed
problems can be solved optimally. Interestingly, with the first
design objective, the obtained solution from the relaxed problem
is also optimal to the original problem. With the second design
objective, a suboptimal solution to the original problem is then
proposed, based on the obtained solution from the relaxed
problem. Simulation results show that the resulting jointly
optimal BS association and beamforming design significantly
outperforms fixed BS association schemes.

Index Terms—CoMP, multicell system, multiuser, coordinated
beamforming, dynamic point selection, convex optimization,
semidefinite programming.

I. INTRODUCTION

To improve the spectral efficiency, current designs of wire-
less networks adopt universal frequency reuse where all the
cells can share the same radio spectrum resources. However,
universal frequency reuse comes at the cost of severe intercell
interference (ICI), especially at cell-edge mobile stations
(MS). In the 3GPP LTE-Advanced standard, coordinated
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multi-point transmission/reception (CoMP) is considered as
an enabling technique to actively deal with the ICI [2].
In CoMP, the coverage, throughput and efficiency of the
multicell system can be significantly improved by fully co-
ordinating and optimizing the concurrent transmissions from
multiple base-stations (BS) to the MSs [2], [3]. Depending
on the level of coordination among the coordinated cells,
a CoMP system can operate under different modes, namely
joint processing/joint transmission (JP/JT), dynamic point se-
lection (DPS), and coordinated scheduling/coordinated beam-
forming (CS/CB) [2], [4], as illustrated in Fig. 1.

coordinated area

JP/JT

(a) Joint Processing/Joint Transmission (JP/JT): a MS is served
simultaneously by two BSs.

coordinated area

CS/CB

(b) Coordinated Scheduling/Coordinated Beamforming (CS/CB):
a MS’s signal (solid blue arrow) is transmitted by one BS and
the interference (red dashed arrow) coming from the other BS is
coordinated.

coordinated area

DPS

(c) Dynamic Point Selection (DPS): a MS is served by one
single BS at any time and MS-BS association can be changed
accordingly to the channel conditions.

Fig. 1: Example operations of different CoMP modes.

In the JP/JT mode (Fig. 1a), the antennas of a cluster of
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coordinated BSs form a large single antenna array [5], [6].
The signals intended for a particular MS are simultaneously
transmitted from multiple BSs across cell sites. Thus, JP/JT
offers the benefit of large-scale BS cooperation [7], [8].
Asymptotic performance of JP/JT has been analyzed in
recent works through the large system analysis of coordinated
multicell systems [7]–[9]. Although JP/JT can exploit the best
performance from the CoMP system, it is the most complex
mode in terms of signaling and synchronization among the
BSs [2]. Per the 3GPP LTE-Advanced Release 11, the JP/JT
mode is normally assumed to be “coherent”, meaning that co-
phasing of the signs from different coordinated transmission
points is performed by means of precoding at the transmitter
[2]. Thus, implementing JP/JT will need a high-resolution
adjustable analog delay to each coordinated BS to cope with
the delay variations. For this reason, it is difficult to fully
realize the potential performance gains of coherent JP/JT,
which may limit their applicability only to BSs connected
by a fast backhaul [10], [11]. In addition, coherent JP/JT
requires inter-point phase information as part of the channel
state information (CSI) feedback from multiple points [12].

The CS/CB mode accounts for the least complex CoMP
mode. In CS/CB (Fig. 1b), the signal to a single MS is
transmitted from the serving cell only [2]. However, the
beamforming functionality is dynamically coordinated be-
tween the BSs to control/reduce the ICI [2], [4], [13]. Optimal
beamforming design for CoMP system under CS/CB mode
can be obtained from joint optimization [7], [8], [13]–[17]
or game theory [18]. To effectively coordinate the inter-cell
interference, CS/CB requires CSI feedback from multiple
points [12]. However, by exploiting channel reciprocality
[12], optimal downlink CS/CB can be implemented if a BS
knows the CSI only to its connected MSs [13].

In DPS mode (Fig. 1c), the MS, at any one time, is being
associated to a single BS. However, this single associated
BS can dynamically change from time-frame to time-frame
within a set of possible BSs inside the cluster [2], [4],
[19]. CoMP DPS provides a good trade-off between the
transmission algorithm complexity, system performance and
backhaul overhead, in comparison to JP/JT and CS/CB [20].
In fact, the synchronization issue and the requirement of
fast backhaul communications can be alleviated in the DPS
mode, compared to the JP/JT mode. In DPS, each MS’s
data has to be available at all the possible BSs ready for
selection. In addition, the beamforming functionality is still
needed to coordinate the transmission across the BSs for
interference control [2]. To facilitate the interference control,
DPS demands similar CSI feedback as CS/CB such that
no inter-point phase information is required [12]. In fact,
when the user-BS association is determined, the DPS mode
becomes the CS/CB mode. Compared to CS/CB, DPS offers
the advantage of site selection diversity, since DPS can
provide a “soft-handoff” solution to among the coordinated
BSs to quickly switch the best BS for association for each
MS. However, it is not clear how a joint BS association

strategy and beamforming design in the DPS mode can be
optimally determined to maximize the performance of the
CoMP system. In this paper, we are interested in jointly op-
timizing the BS association strategy and linear beamforming
design for a CoMP downlink system under the DPS mode.
With a set of target signal-to-interference-plus-noise ratios
(SINR) at the MSs, our design objective is to minimize either:
i.) the weighted sum transmit power across the BSs or ii.)
the per-BS transmit power margin.

A. Related Works

Designing multicell beamformers under the CS/CB mode
has attracted a lot of research attention, such as [7], [8],
[13]–[18]. Uplink-downlink duality and iterative fixed-point
iteration have been successfully exploited in [13]–[17] to
obtain optimal beamformers to either minimize the sum
transmit power at the BSs or maximize the minimum SINR
at the MSs. Different to these previous studies, part of this
work examines the application of uplink-downlink duality to
optimize the multicell beamformers under the DPS mode.

While the problem of joint BS association and beamform-
ing design/power control in uplink transmission has been
intensively studied [21]–[23], the counterpart problem in
downlink transmission is not well understood. There are few
prior studies in literature which deal with this downlink
transmission problem. In [24], the problem for downlink
transmission has been investigated for the case of power
control (not including beamforming design). It is stated in
[24] that there is no Pareto-optimal solution for the problem
of joint BS association and beamforming design in the
downlink. The work in [25] tackled the problem of joint
downlink beamforming, power control, and access point allo-
cation in a congested system. In [26], the joint optimization
of BS association and beamforming design was examined
and a relaxing-and-rounding technique was proposed as a
suboptimal solution to the binary variables indicating the BS
association. Recent works in [27]–[29] proposed joint BS
association and power allocation/beamforming design strate-
gies to maximize the multicell system throughput. In another
work [30], the problem of joint BS assignment and power
allocation for maximizing the minimum rate in a single-input
single-output (SISO) interference channel was investigated.
A two-stage algorithm was proposed to iteratively find the
BS assignment and power allocation for the users [30].
In contrast to these works, our formulation and solution
framework are to attain Pareto-optimal joint BS association
and beamforming design strategies with guaranteed SINRs at
the MSs.

In the context of finding the optimal beamforming design
for power minimization, the optimization can be formulated
as a nonconvex quadratic constrained quadratic programming
(QCQP) problem [31]. The nonconvex QCQP is then solved
indirectly via convex semi-definite programming (SDP) re-
laxation [31] or a transformation into a convex second-
order conic programming (SOCP) problem [13], [32], [33].
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It will be shown later in this paper that it is not possible
to transform the problems under consideration into a SOCP.
Thus, we rely on recent developments in nonconvex QCQP
[34] in joinly devising the optimal BS association strategy
and beamforming design.

B. Contributions of This Paper

In this work, we formulate the joint BS association and
beamforming design problems as mixed integer programs,
which contain the binary variables indicating the BS asso-
ciations. To circumvent the difficulty in dealing with the
binary variables and devise optimal joint BS association
and beamforming designs, our proposed solution approaches,
which also account for the main contributions of this paper,
are as follows:
• We propose a relaxation method to solve these original

mixed integer programs by relaxing all the binary vari-
ables to 1 and focusing on optimizing the beamformers.
These relaxed optimization problems are shown to be
nonconvex QCQP. Our analysis based the QCQP solu-
tion framework then shows that the relaxed problems
can be solved optimally.

• Under the design objective of minimizing the weighted
sum transmit power, the obtained solution from the
relaxed problem is also optimal to the original problem.
Specifically, this solution indicates both the optimal BS
association strategy and the optimal beamforming de-
sign for all MSs. Our proposed framework also indicates
that any Pareto-optimal solution can be obtained by
properly adjusting the weight factors in the objective
function of sum transmit power.

• We propose two solution approaches based on the La-
grangian duality and the dual uplink problem to find
the optimal solution. Via the dual uplink problem, we
propose a distributed algorithm to obtain the optimal
joint BS association and beamforming design. We show
that the DPS can be optimally implemented when a BS
knows the CSI only to users within its serving user set.

• Under the design objective of minimizing the per-BS
transmit power margin, the optimality of the relaxed
problem’s solution to the original problem is not always
observed. Nevertheless, based on the obtained solution
from the relaxed problem, a suboptimal solution to the
original problem is then proposed. We observe that the
performance gap between the suboptimal solution to
the optimal one is negligible in simulations. Simulation
results also show that the resulting optimal joint BS
association and beamforming design can significantly
improve the performance of the CoMP system.

Notations: Superscripts (·)T , (·)∗, (·)H stand for trans-
pose, complex conjugate, and complex conjugate transpose
operations, respectively; upper-case bold face letters are used
to denote matrices whereas lower-case bold face letters
are used to denote column vectors; diag(d1, d2, . . . , dM )
denotes an M ×M diagonal matrix with diagonal elements

d1, d2, . . . , dM ; [·]i,j denotes the (i, j) element of the matrix
argument; x? indicates the optimal value of the variable x;
A � B (and A � B) is to indicate the matrix inequality (and
strict matrix inequality) defined on the cone of nonnegative
definite matrices; A � B is to denote that A−B is a semi-
definite and singular matrix; |x| denotes the absolute value
of the scalar number x whereas |X | denotes the cardinality
of the set X ; C and R denote the sets of complex and real
numbers, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the multiuser downlink transmission in a
multicell network consisting of Q BSs and K MSs operating
on a same frequency band. Denote Q and K as the set of BSs
and MSs, respectively. It is assumed that each BS is equipped
with M transmit antennas and each MS is equipped with a
single receive antenna. In each cell, the BS multiplexes and
concurrently sends multiple data streams to multiple MSs.
However, each MS can be only associated with one BS at
any time. In the downlink transmission to a particular MS,
say MS-i, its received signal yi can be modeled as

yi =

Q∑
q=1

hHiqxq + zi, (1)

where xq ∈ CM×1 is the transmitted signal at BS-q, h∗iq ∈
CM×1 represents the channel from BS-q to MS-i, and zi is
the AWGN with a power spectral density σ2.

Let Qi ⊂ Q be the cluster of coordinated BSs serving
user-i, and let Kq be the serving user set by BS-q. Let
us define binary variables aiq, i ∈ K, q ∈ Qi to represent
the association between MS-i and BS-q. More specifically,
the binary variable aiq = 1 if and only if BS-q ∈ Qi is
assigned to serve MS-i. By means of linear beamforming,
the transmitted signal at BS-q can be formulated as

xq =
∑
i∈Kq

wiqui, (2)

where wiq ∈ CM×1 is the beamforming vector and ui is
a complex scalar representing the signal intended for MS-i.
Without loss of generality, let E[|ui|] = 1. Clearly, if aiq = 0,
wiq needs to be set at all-0 vector. If BS-q with q ∈ Qi is
selected to serve MS-i, the SINR at MS-i is then given by

SINRiq =

∣∣hHiqwiq

∣∣2
K∑
j 6=i

∑
r∈Qj

∣∣hHirwjr

∣∣2 + σ2

. (3)

B. Problem Formulation

We first consider the joint BS association and beamforming
design with the design objective of minimizing the weighted
sum transmit power across the BSs with a set of target SINRs
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at the MSs. Let wq be the positive weight for the transmit
power at BS-q. The optimization problem is then stated as

P1 : minimize
{aiq},{wiq}

Q∑
q=1

wq
∑
i∈Kq

‖wiq‖2 (4)

subject to
∑
q∈Qi

aiqSINRiq ≥ γi,∀i

aiq = {0, 1},∀q ∈ Qi,∀i∑
q∈Qi

aiq = 1,∀i,

where the last constraint is to ensure that only one BS in Qi
will be associated with MS-i.

Remark 1: With a predetermined BS association strategy
(known aiq’s), problem P1 becomes the CS/CB design prob-
lem, whose optimal solution is readily obtainable [13]. In
this case, the SINR constraints can be cast as convex second-
order conic (SOC) constraints, which effectively transforms
the optimization problem into a convex one. However, with
the dynamic BS association strategy, the presence of binary
variables aiq , problem P1 is a nonconvex mixed integer
program, which is NP-hard [35]. In fact, an exhaustive search
for the optimal BS association has exponential complexity
and is impractical for implementation.

One common method to solve a mixed integer program is
relaxing the discrete variables into continuous ones [36]. In
this work, we take a completely different approach by setting
the binary variables aiq’s to 1s. More precisely, we consider
the following optimization problem:

P ′1 : minimize
{wiq}

Q∑
q=1

wq
∑
i∈Kq

‖wiq‖2 (5)

subject to
∑
q∈Qi

∣∣hHiqwiq

∣∣2
K∑
j 6=i

∑
r∈Qj

∣∣hHirwjr

∣∣2 + σ2

≥ γi,∀i.

Theorem 1. The minimum weighted sum transmit power
obtained from solving problem P ′1 is a lower-bound to that
obtained from solving problem P1.

Proof: Suppose that ({a?iq}, {w?
iq}) is the optimal solu-

tion to the original joint BS and beamforming problem P1.
From the solution (a?iq,w

?
iq), we denote qi ∈ Qi as the BS

associated with MS-i. Since a MS can only be assigned to
one BS, we have a?iqi = 1, a?iq = 0,∀q 6= qi, and w?

iqi
6= 0

and w?
iq = 0,∀q ∈ Qi, q 6= qi. In addition, {w?

iqi
} must be

an optimal solution to the following problem

P̄1 : minimize
{wiqi

}

K∑
i=1

wqi ‖wiqi‖
2 (6)

subject to

∣∣hHiqiwiqi

∣∣2
K∑
j 6=i

∣∣hHiqjwjqj

∣∣2 + σ2

≥ γi,∀i,

where
∣∣hHiqjwjqj

∣∣2 is the interference induced by the BS
connected to MS-j, i.e., qj , to MS-i. If additional constraints

wiq = 0,∀q ∈ Qi, q 6= qi,∀i are introduced to problem P̄1,
we will have the following optimization problem

P̂1 : minimize
{wiq}

Q∑
q=1

wq
∑
i∈Kq

‖wiq‖2 (7)

subject to

∑
q∈Qi

∣∣hHiqwiq

∣∣2
K∑
j 6=i

∑
r∈Qj

∣∣hHirwjr

∣∣2 + σ2

≥ γi,∀i

wiq = 0,∀q ∈ Qi, q 6= qi,∀i.

Due to the additional constraints wiq = 0,∀q ∈ Qi, q 6=
qi,∀i, the objective functions of problems P̄1 and P̂1 are the
same. In addition, the numerators in the SINR constraints
in the two problems are the same, so are the denominators.
Thus, problem P̂1 must yield the same solution as problem
P̄1, i.e., same optimal point. If the additional constraints
wiq = 0,∀q ∈ Qi, q 6= qi,∀i are now removed from problem
P̂1, we will have problem P ′1. Since problem P ′1 has a larger
feasibility region than problem P̂1, the minimum point of
problem P ′1 must not exceed that of problem P̂1. As a result,
the optimal point of problem P ′1 is a lower bound to the
optimal point of the original problem P1.

Corollary 1. If problem P1 is feasible, problem P ′1 is also
feasible. Conversely, the infeasibility of problem P ′1 also
indicates the infeasibility of problem P1.

Corollary 2. Given that {w?
iq} with i ∈ K, q ∈ Qi is the set

of optimal beamformers obtained from solving problem P ′1,
if there exists qi ∈ Qi such that w?

iqi
6= 0 and w?

iq = 0,∀q 6=
qi, then {w?

iq} is also the optimal solution to problem P1.

Proof: This corollary comes directly from Theorem 1
and its proof. The optimal BS association for MS-i is then
given by the BS index qi ∈ Qi corresponding to w?

iqi
6= 0.

Moreover, w?
iqi

is also the optimal beamforming vector for
MS-i.

In the following sections, we focus on solving problem
P ′1. It is noted the SINR constraint in problem P ′1 can be
restated as∑

q∈Qi

∣∣hHiqwiq

∣∣2 ≥ γi K∑
j 6=i

∑
r∈Qj

∣∣hHirwjr

∣∣2 + γiσ
2. (8)

If there is only one term on the left hand side of the above in-
equality constraint, say

∣∣hHiqiwiqi

∣∣2, one can assume hHiqiwiqi

to be real. The constraint then can be transformed into a
SOC form [32], which is convex. However, since we now
have the summation of multiple terms

∑
q∈Qi

∣∣hHiqwiq

∣∣2,
with |Qi| > 1, there is no known method to transform the
nonconvex quadratic constraint (8) into a convex form, e.g.,
SOC constraint. Thus, in order to devise an optimal solution
to problem P ′1, we rely on the nonconvex QCQP framework
presented in Section III. Interestingly, it will be shown the
optimal solution to problem P ′1 indeed meets the conditions
given in Corollary 2.



5

III. NONCONVEX QUADRATIC CONSTRAINED
QUADRATIC PROGRAMMING

This section presents a brief background on nonconvex
QCQP and exposes relevant properties on strong duality of
nonconvex QCQP. We consider a generic nonconvex QCQP
as follows:

QCQP : minimize
x∈CN

f0(x) (9)

subject to fi(x) ≤ 0, i = 1, . . . , L,

where fi(x), i = 0, . . . , L are quadratic, but not necessarily
convex, functions on x ∈ CN . The Lagrangian of problem
(9) is given as

L(x,λ) = f0(x) +

L∑
i=1

λifi(x), (10)

where λ , [λ1, . . . , λL]T and λi ≥ 0 is the Lagrangian
multiplier associated with constraint fi(x) ≤ 0, i = 1, . . . , L.
The dual function is then given by

g(λ) = inf
x
L(x,λ). (11)

By nature, the dual function g(λ) is concave on λ ∈ RL+
[37]. Let p? be the optimal value of problem QCQP and d?

be the optimal value of the dual problem maximizeλ≥0 g(λ).
By definition [37], one has

p? = min
x

sup
λ≥0
L(x,λ), (12)

and d? = max
λ≥0

inf
x
L(x,λ). (13)

Weak duality dictates that d? ≤ p? and the difference p?−
d? is called the duality gap (cf. Section 5 in [37]). If strong
duality holds, i.e., zero duality gap with d? = p?, the optimal
solution of the primal problem can be found through the dual
problem as in (13). While strong duality holds for any convex
optimization problem with Slater’s condition qualification,
strong duality also obtains for nonconvex problems on rare
occasions [37]. In any case of having strong duality, a saddle
point (x?,λ?) for function L(x,λ), defined as

L(x?,λ)≤L(x?,λ?)≤L(x,λ?),∀x ∈ CN ,∀λ ∈ RL+, (14)

must exist. The following property, presented in Section 5.4
of [37], underlines the connection between the existence of
a saddle point for L(x,λ) and strong duality.

Property 1. If the function L(x,λ) possesses a saddle point
(x?,λ?) on CN × RL+, then strong duality d? = p? holds.
Conversely, if d? is finite with λ? = arg maxλ≥0 g(λ), and
the original problem has an optimal solution at x?, then
(x?,λ?) is a saddle point of L(x,λ).

The following property concerning the conditions on the
existence of a saddle point has been presented in [34] and
its proof was partially sketched in Page 1063 of the work.

Property 2. The existence of a saddle point of L(x,λ) on
CN×RL+ is equivalent to the following condition: there exists
λ? such that the function L(x,λ?) is convex on CN and has

a minimizer x? on CN satisfying λ?i fi(x
?) = 0, fi(x

?) ≤
0, i = 1, . . . , L.

Thus, in order to prove strong duality in a nonconvex
QCQP problem and obtain its optimal solution via its La-
grangian dual problem, it suffices to show that the condition
given in Property 2 is fulfilled [34]. Strong duality in noncon-
vex QCQP is also guaranteed under the following property,
which is presented as Theorem 6 in [34].

Property 3. Assume that the concave dual function g(λ) =
infx L(x,λ) attains its maximum at a point λ? ∈ RL+. If
L(x,λ?) is strictly convex on CN , then strong duality holds.

IV. QCQP SOLUTION APPROACH TO PROBLEM P ′1
This section presents an analytical approach to obtain an

optimal solution to problem P ′1. It is noted that problem P ′1
is a nonconvex QCQP, which is NP-hard in general [34]. Our
approach is to prove strong duality of this particular problem
P ′1. First, the Lagrangian of problem P ′1 can be stated as

L1({wiq},λ)

=

Q∑
q=1

wq
∑
i∈Kq

‖wiq‖2

−
K∑
i=1

λi

(
1

γi

∑
q∈Qi

∣∣hHiqwiq

∣∣2 − K∑
j 6=i

∑
r∈Qj

∣∣hHirwjr

∣∣2 − σ2

)

=

K∑
i=1

λiσ
2

+

K∑
i=1

∑
q∈Qi

wH
iq

(
wqI−

λi
γi

hiqh
H
iq+

K∑
j 6=i

λjhjqh
H
jq

)
wiq.(15)

The dual function is then given by g1(λ) =
min{wiq} L1({wiq},λ). Clearly, if any matrix
wqI − λi

γi
hiqh

H
iq +

∑K
j 6=i λjhjqh

H
jq is not positive semi-

definite, it is possible to find wiq to make g1(λ) unbounded
below. Thus, the dual problem is given by

maximize
λ≥0

K∑
i=1

λiσ
2 (16)

subject to wqI +

K∑
j 6=i

λjhjqh
H
jq �

λi
γi

hiqh
H
iq ,∀q ∈ Qi,∀i.

Remark 2: The dual problem is an SDP and a convex
problem by nature. Its optimal solution can be easily obtained
by the interior point method or standard SDP solvers, such
as cvx [38]. However, a closer look on the dual problem
(16) can analytically establish an optimal solution to problem
P ′1 as well as its feasibility. Note that the dual problem
(16) is always feasible (for instance, λi = 0,∀i satisfies all
the constraints). However, its feasibility does not necessarily
indicate the feasibility of the primal problem P ′1. It may
happen that λi →∞ at optimality and all constraints in (16)
are still satisfied, i.e., the dual problem is unbounded above.



6

In this case, the primal problem P ′1 is infeasible thanks to
the weak duality properties [37].

We now focus on the case where the optimal value of the
dual problem (16) is finite, i.e., the primal problem P ′1 is
feasible.

Theorem 2. If the nonconvex QCQP P ′1 is feasible, then
strong duality holds.

Proof: Denote λ? as the optimal solution of the dual
problem. At λ?, the function L1({wiq},λ?) is convex in
{wiq}. Thus, in order to satisfy the conditions in Property
2 as presented in Section III, it is left to find {w?

iq} ∈
arg min{wiq} L({wiq},λ?) such that {w?

iq} is feasible to
problem P ′1 and moreover

λ?i

1

γi

∑
q∈Qi

∣∣hHiqw?
iq

∣∣2 − K∑
j 6=i

∑
r∈Qj

∣∣hHirw?
jr

∣∣2−σ2

= 0,∀i.

(17)
Consider the set of constraints related to MS-i with optimal

λ? in the dual problem (16). Suppose that

wqI +

K∑
j 6=i

λ?jhjqh
H
jq �

λ?i
γi

hiqh
H
iq ,∀q ∈ Qi. (18)

We can increase λ?i to some value λ̂i such that

wqI +

K∑
j 6=i

λ?jhjqh
H
jq �

λ̂i
γi

hiqh
H
iq ,∀q ∈ Qi. (19)

By setting λ̂j = λ?j ,∀j 6= i, one yields a feasible solution
λ̂ = [λ̂1, . . . , λ̂K ]T that improves the objective function of
problem (16), i.e.,

∑K
i=1 λ̂iσ

2 >
∑K
i=1 λ

?
i σ

2. Thus, λ? can-
not be an optimal solution of problem (16) by contradiction.
As a result, there must exist a non-empty subset Q̂i ⊂ Qi,
such that

wqI +

K∑
j 6=i

λ?jhjqh
H
jq �

λ?i
γi

hiqh
H
iq ,∀q ∈ Q̂i. (20)

Otherwise, λ?i can be further increased. Due to the above set
of inequalities (with �), λ?i ,∀i must be positive. For q ∈
Qi\Q̂i, strict inequality applies, i.e.,

wqI +

K∑
j 6=i

λ?jhjqh
H
jq �

λ?i
γi

hiqh
H
iq ,∀q ∈ Qi\Q̂i. (21)

Since strict inequality (21) is enforced ∀q ∈ Qi\Q̂i,
the corresponding beamforming vector w?

iq must be set to
all-0 vector in order to have the Lagrangian function (15)
minimized. On the other hand, since inequality (20) happens
for q ∈ Q̂i, there exists an eigenvector ŵiq ∈ CM , ‖ŵiq‖ = 1
corresponding to the 0 eigenvalue, such that

ŵH
iq

(
wqI+

K∑
j 6=i

λ?jhjqh
H
jq−

λ?i
γi

hiqh
H
iq

)
ŵiq= 0,∀i,∀q ∈ Q̂i.

(22)

To minimize the Lagrangian L1({wiq},λ?), w?
iq can be

chosen as a scaled version of ŵiq . For each MS, say MS-
i, a BS indexed as qi ∈ Q̂i is randomly chosen and the
corresponding beamforming vector w?

iqi
is set as

√
δiŵiqi ,

where the scaling coefficient δi > 0 will be determined
shortly. For all BSs, q ∈ Q̂i, q 6= qi, w?

iq is purposely
set at 0. Thus, we obtain a set of beamforming vector
{w?

iq}∀q∈Qi
∈ arg min{wiq} L({wiq},λ?). The next step is

to determine δi’s such that w?
iqi

’s satisfies condition (17).
Note that λ?i > 0,∀i and w?

iq = 0,∀q 6= qi. By substituting
w?
iqi

=
√
δiŵiqi into (17), we obtain a set of equations

δi
γi

∣∣hHiqiŵiqi

∣∣2 − δj K∑
j 6=i

∣∣hHiqj ŵjqj

∣∣2 = σ2, i = 1, . . . ,K, (23)

Equivalently, Gδ = 1σ2, where δ = [δ1, . . . , δK ]T and G ∈
RK×K is defined as [G]i,i = (1/γi)

∣∣hHiqiŵiqi

∣∣2 and [G]i,j =

−
∣∣hHiqj ŵjqj

∣∣2.
It is noted that the set of equations in (22) can be cast as

GTλ? = [wq1 , . . . , wqK ]T > 0. (24)

Since GT is a Z-matrix and there exists λ? > 0 such that
GTλ? > 0, GT is an M-matrix by its characterization
(Condition I28, Theorem 6.2.3 in [39]).1 Thus, G, also an
M-matrix, is invertible and its inverse is a positive matrix
[39]. As a result, δ > 0 can be determined by

δ = G−11σ2. (25)

Since {w?
iqi

=
√
δiŵiqi}∀i now satisfies the set of equations

(22), we yield a feasible solution to the problem P ′1 where
each constraint is met with equality. The qualification of
condition (17) by {w?

iqi
} then guarantees the satisfaction of

all conditions in Property 2. Strong duality for problem P ′1
then follows. Furthermore, {w?

iqi
} must be a globally optimal

solution of the nonconvex problem P ′1.
We now relate the optimal solution {w?

iqi
} of problem P ′1

to the original mixed-integer problem P1 as follows.

Proposition 1. The obtained optimal solution {w?
iqi
} of

problem P ′1 is also optimal to the original mixed-integer
problem P1. Furthermore, qi indicates an optimal BS as-
sociation for MS-i.

Proof: In solving problem P ′1, we derived an optimal
solution where w?

iqi
6= 0 and w?

iq = 0,∀q 6= qi. Thus, Corol-
lary 2 is applicable. The optimality of {w?

iqi
} to problem P1

and the association of MS-i to BS-qi follow.
Through numerous numerical simulations, we observe that

inequality (20) is met at only one BS in the set Qi, i.e.,
|Q̂i| = 1, except for the extremely rare cases where the
channels from two BSs are exactly symmetric or two BSs
are co-located. We address the cases when |Q̂i| > 1 in the
following proposition.

1A square matrix X is a Z-matrix if all its off-diagonal elements are
nonpositive. A square matrix X is a P-matrix if all its principle minors are
positive. A square matrix that is both a Z-matrix and a P-matrix is called
a M-matrix [39], [40].
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Proposition 2. If |Q̂i| > 1, MS-i can be associated to either
one of the BSs in the set Q̂i without affecting minimum
weighted sum transmit power across the BSs.

Proof: If |Q̂i| > 1, we can first select any BS, say
qi ∈ Q̂i, such that the corresponding beamformer w?

qi is
set to be non-zero and w?

q = 0,∀q 6= qi. The derivation
steps (22)–(25) can be sequentially applied to determine the
scaling factor and the beamformers {w?

iq} for all the users.
Interestingly, different association schemes (with qi ∈ Q̂i
and their corresponding beamforming designs) might yield
different globally optimal solutions to problem P ′1 with the
same optimal value. The reason for this result is because the
obtained solutions (w?

iq,λ
?) will satisfy the set of equations

(17) and other conditions in Property 2 to be globally optimal.
In addition, different BS assignments for MS-i in Q̂i will
also yield the same minimum weighted sum power across
the BSs, which must equal to the optimal value of the dual
problem (16),

∑K
i=1 λ

?
i σ

2. In spite of that, individual transmit
powers at the BSs might not be the same with different BS
assignments for MS-i.

Since the P1 can be optimally solved, any Pareto-optimal
solution of the problem can be obtained by properly adjusting
the weight factor wq’s in the objective function.

V. INTERPRETATION VIA UPLINK-DOWNLINK DUALITY

In the previous section, we have presented an analyti-
cal approach to solve problem P ′1 via its Lagrangian dual
problem. In this section, we provide an alternative approach
for solving problem P ′1 via the well-known uplink-downlink
duality. It will be shown shortly that the Lagrangian dual
problem (16) is indeed the power minimization problem with
SINR constraints in the uplink. We note that uplink-downlink
duality is a powerful tool which has been studied in different
contexts of multicell beamforming designs [13]–[17]. Fixed-
point iterative algorithms were proposed to find the corre-
sponding optimal beamforming solutions [13]–[16]. Herein,
we show that uplink-downlink duality is also applicable to
the joint BS association and beamforming design problem
under consideration. We then propose an iterative fixed-point
algorithm to effectively solve the problem.

A. Dual Uplink System Model

We consider the dual uplink system with the same setting
as in Section II. Specifically, the dual uplink system is
derived from the downlink system by transposing the channel
matrices and by interchanging the input and the output
vectors. In addition, the noise at each BS, say BS-q, is
assumed to be zero mean AWGN with the covariance matrix
σ2wqI. Herein, the single-antenna MS-q is transmitting at
power p̂i and hiq is the uplink channel from MS-i to BS-q.
If MS-i is associated with BS-q where q ∈ Qi, the BS then
applies the receive beamforming vector ŵiq to decode MS-i’s
signal. In the considered uplink system, the BS association
is performed by selecting a BS in Qi such that MS-i needs
to transmit at minimum power to obtain the SINR target γi

at the very BS. Thus, the design objective now is to jointly
optimize the power allocation p̂i’s, the receive beamforming
vector ŵiq, q ∈ Qi,∀i, and the BS association to satisfy the
set of SINR constraints γi’s. The joint uplink optimization
can be stated as

minimize
p̂1,...,p̂K ,{ŵiq}

K∑
i=1

p̂i (26)

subject to max
q∈Qi

p̂i
∣∣ŵH

iqhiq
∣∣2

K∑
j 6=i

p̂j
∣∣ŵH

iqhjq
∣∣2 + σ2wqŵH

iq ŵiq

≥ γi,∀i.

We now underline the connection between the downlink
problem P ′1 and the dual uplink problem (26).

Proposition 3. The optimal downlink beamforming problem
P ′1 can be solved via a dual uplink problem in which the SINR
constraints remain the same. Specifically, the Lagrangian
dual problem (16) of problem P ′1 is the following problem

minimize
λ1,...,λK ,{ŵiq}

K∑
i=1

λiσ
2 (27)

subject to max
q∈Qi

λiσ
2
∣∣ŵH

iqhiq
∣∣2

K∑
j 6=i
λjσ2

∣∣ŵH
iqhjq

∣∣2+ σ2wqŵH
iq ŵiq

≥γi,∀i,

where p̂i = λiσ
2 is dual uplink power of MS-i. If the dual

uplink problem (27) is feasible, its optimal solution is also
optimal to the Lagrangian dual problem (16). Otherwise, the
Lagrangian dual problem (16) is unbounded above.

Proof: For given uplink power allocation p̂i = λiσ
2, the

optimal receive beamforming vector at BS-q, q ∈ Qi is the
minimum mean-squared error (MMSE) receiver

ŵiq =

(
K∑
j=1

λjhjqh
H
jq + wqI

)−1
hiq. (28)

By substituting the above MMSE receiver ŵiq , the SINR
constraint for MS-i in (27) becomes

λi

(
1 +

1

γi

)
·max
q∈Qi

hHiq

(
K∑
j=1

λjhjqh
H
jq+wqI

)−1
hiq ≥ 1. (29)

Note that the above set of constraints for i = 1, . . . ,K may
constitute an empty set, which then renders the dual uplink
problem infeasible. However, if the dual uplink problem (27)
is feasible, at optimality the set of inequality constraints (29)
must meet at equality, i.e.,

λi

(
1+

1

γi

)
·max
q∈Qi

hHiq

(
K∑
j=1

λjhjqh
H
jq + wqI

)−1
hiq = 1,∀i.

(30)
Thanks to Lemma 1 in [33] as provided following this

proof, the constraint in the Lagrangian dual problem (16)
can be recast as

λi

(
1+

1

γi

)
hHiq

(
K∑
j=1

λjhjqh
H
jq + wqI

)−1
hiq ≤ 1,∀q ∈ Qi,
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or equivalently,

λi

(
1 +

1

γi

)
·max
q∈Qi

hHiq

(
K∑
j=1

λjhjqh
H
jq + wqI

)−1
hiq ≤ 1.

(31)
Unlike the dual uplink problem (27), the Lagrangian dual

problem (16) is always feasible, thanks to its nonempty
constraint set. In case of having a finite optimal value, it is
clear that at optimality the set of inequality constraints (31)
must be met at equality, as given in (30). Thus, the power
minimization problem (27) of

∑K
i=1 λiσ

2 with minimum
SINR constraints (29) and the power maximization problem
(16) of

∑K
i=1 λiσ

2 with maximum SINR constraints in (31)
are equivalent since λi’s in both problems are the fixed point
of the equations (30). It will be shown shortly that this fixed
point is unique if it exists. In that case, the fixed point is
the optimal solution for both problems. If a fixed point does
not exist, the dual uplink problem (27) is not feasible and
equivalently the Lagrangian dual problem (16) is unbounded
above.

For completeness, Lemma 1 in [33] is presented as follows:
“Let A be an n × n symmetric positive semidefinite matrix
and b be an n × 1 vector. Then, A � bbH if and only if
bHA−1b ≤ 1.”

B. An Iterative Algorithm for Solving Problem P ′1
Having established the equivalence between the La-

grangian dual problem (16) and the dual uplink problem
(27), this section focuses on obtaining the solution to both
problems by finding the fixed point to the set of equations
(30). By rearranging (30) into a fixed point iteration, one has

λ
(n+1)
i = min

q∈Qi

fiq
(
λ(n)

)
, (32)

where fiq(λ) is defined as

fiq(λ) =
γi

1 + γi
· 1

hHiqΣ
−1
q hiq

. (33)

and Σq =
∑K
j=1 λjhjqh

H
jq + wqI.

Proposition 4. If a fixed point of (30) exists, it is unique and
the iterative function evaluation (32) converges geometrically
fast to the fixed point.

Proof: It is proven in [32], [33] that fiq(λ) satisfies the
three properties (positivity, monotonicity, and scalability) to
be a standard function. Moreover, the point-wise minimum
of a set of standard function, i.e., minq∈Qi

fiq(λ), is also
a standard function [41]. Thus, the iteration (32) converges
geometrically fast to the fixed point, if it exists.

The iteration (32) accounts for the first step of the iterative
algorithm to solve problem P ′1. The second step is to find
the optimal receive beamformer ŵiqi , where qi is the BS
association with MS-i. Then, the final step is to obtain the
optimal transmit beamformer wiqi . We summarize these three
steps in the following Algorithm 1.

Algorithm 1: Iterative Algorithm for Minimizing The
Weighted Sum Transmit Power

1 Initialize λi > 0, ∀i;
2 repeat
3 Update λi as given in equation (32),
4 until convergence to λ?;
5 Set qi = argminq∈Qi fiq(λ

?),∀i;
6 Find the receive beamformer ŵqi as given in equation (28);
7 Find the transmit beamformer w?

iqi =
√
δiŵqi , where δi is

given by (25);

C. Distributed Implementation

An interesting development from the above uplink-
downlink duality interpretation is that all the three steps in
the iterative algorithm proposed in the previous section can
be implemented distributively. Herein, it is assumed that the
system is operating in the time division duplex (TDD) mode
where the uplink and downlink channels are reciprocal. It is
also assumed that the weight wq is known at BS-q.

In the first step, the iteration (32) on the uplink power
λi involves only its channel vectors hiq’s and the matrices
Σq’s obtained from the BSs in Qi. With known wq , BS-q
can compensate the background noise to wqσ

2. Then Σq ,
as the covariance matrix of the total received signal at BS-
q in the uplink, can be estimated locally by the BS. Thus,
the transmit powers λi’s can be updated as in (32) on a
per-user basis without inter-BS or inter-user coordination.
Should the acquisition of the channel hiq’s or the matrices
Σq’s be challenging at the MSs, BS-q can simply calculate
fiq = γi

1+γi
· 1

hH
iqΣ−1

q hiq
for i ∈ Kq as the required transmit

power at MS-i to obtain its target SINR γi at the very BS.
Subsequently, fiq’s are passed to MS-i, who will choose the
lowest uplink power λi = minq∈Qi fiq . The BS that can
achieve the SINR γi with the uplink power λi is then the
one associated with MS-i. Thanks to Proposition 4, these
iterative steps always converge to a fixed point if it exists.

While the second step to determine the MMSE receivers
(28) is straightforward at the BSs, the final step to calcu-
late the scaling factors δi’s is more involved. In particular,
although δi’s are found as in (25), this matrix inversion
process requires centralized implementation. On the other
hand, finding δi’s is equivalent to the downlink power control
problem for achieving a set target SINRs γi’s. One solution
approach is the Foschini-Miljanic’s algorithm where the
optimal downlink powers can be found iteratively in a fully
distributed manner using per-user power updates [42].

Remark 3: In downlink CS/CB, it is shown in [13] that
the optimal downlink beamforming can be obtained even
if each BS only knows the CSI to its connected MSs by
exploiting channel reciprocality. Via the distributed imple-
mentation presented in this section, we show that the optimal
BS association and beamforming design in the DPS mode can
be devised if each BS only knows the CSI to the MSs in its
serving user set, i.e., BS-q needs the CSI hiq to the MSs
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in Kq . By exploiting channel reciprocality, BS-q can listen
to the training signal from MS-i in the uplink transmission
for estimating hiq . The only signaling or feedback involved
is passing of the required transmit power fiq for MS-i
to connect to BS-q in the uplink. MS-i is then required
to make the recommendation of its selected BS qi, i.e.,
qi = arg minq∈Qi

fiq . This selection recommendation by the
MSs is consistent with the CoMP implementation in the LTE
Release 11 [12].

VI. SEMIDEFINITE PROGRAMMING RELAXATION

In this section, we present the SDP relaxation approach to
find an optimal solution to problem P ′1. It is well known
that SDP relaxation can be successfully exploited to find
the optimal multiuser beamforming design for single-cell
systems [31], [32], [43]. To apply the SDP relaxation to the
multicell system model under consideration, we first replace
wiqw

H
iq by Xiq and hiqh

H
iq by Hiq and recast problem P ′1

into an SDP

minimize
{Xiq}

Q∑
q=1

wq
∑
i∈Kq

Tr{Xiq} (34)

subject to
1

γi

∑
q∈Qi

Tr{HiqXiq}−
K∑
j 6=i

∑
r∈Qj

Tr{HirXjr}≥σ2,∀i

Xiq � 0, rank{Xiq} = 1.

Since the rank constraint is nonconvex, we remove it
and relax problem (34) into a convex SDP. Once we have
a convex SDP, the interior-point method can be applied
to find its optimal solution. Through numerous numerical
simulations, we found a similar result reported [31], [43]
that a rank-1 solution of the SDP relaxation problem can
always be found. Thus, it is possible to retrieve wiq from
the obtained solution in Xiq . In addition, it is even more
interesting that among the optimal solution set related to a
particular MS, e.g., {Xiq}, q ∈ Qi, there is only one non-zero
(and rank-1) matrix. As a result, solving the SDP relaxation
version of problem (34) provides the optimal solution not
only to the beamforming problem P ′1, but also to the original
joint BS association and beamforming design problem P1.

It is noted that the obtained optimal result from the SDP
relaxation approach can be proved analytically. First, it can be
shown that the Lagrangian dual of the SDP relaxation version
of problem (34) is the same as problem (16). Second, problem
(16) is the dual problem of the QCQP P ′1 and strong duality
holds. Thus, our proposed framework via nonconvex QCQP
in Section IV provides a rigorous analytical confirmation to
the numerical results obtained here by the SDP relaxation
approach. Nonetheless, the drawback of the SDP relaxation
approach is the complexity in solving the relaxed version of
problem (34) due to the expanded set of variables. Certainly,
solving the convex SDP in the Lagrangian dual problem (16)
is much simpler.

VII. MINIMIZATION OF THE PER-BASE-STATION
TRANSMIT POWER MARGIN

In the optimization problem P1, the adjustment of the
weight factors wq’s provides a trade-off among the power
consumptions at different BSs. In this section, we consider a
practical scenario of minimizing the transmit power margin
across the BSs, in which the weights are implicitly deter-
mined. To jointly optimize the BS association and the beam-
forming design, the optimization problem can be formulated
as follows:

P2 : minimize
{aiq},{wiq},α

α

Q∑
q=1

Pq (35)

subject to
∑
q∈Qi

aiqSINRiq ≥ γi,∀i

aiq = {0, 1},∀q ∈ Qi,∀i∑
q∈Qi

aiq = 1,∀i,∑
i∈Kq

‖wiq‖2 ≤ αPq.

Herein, α represents the margin between the transmit power
of a BS, say BS-q, and its maximum power value Pq .
By minimizing α, the multicell system tries to balance the
power consumptions across the BSs and does not overuse
any of them. This formulation is especially beneficial to
heterogeneous multicell systems where Pq’s can be different
by one or two orders of magnitude. The resulting optimal α?

from problem P2 is also important to verify the compliance
of individual power constraints at the BSs. Specifically, if
α? ≤ 1, then it is feasible to find an optimal BS association
and beamforming design to meet all the SINR constraints
and the per-BS power constraint

∑
i∈Kq

‖wiq‖2 ≤ Pq,∀q.
Similar to problem P1, problem P2 is a difficult nonconvex

mixed integer program. Thus, we take a similar approach
in solving problem P1 by relaxing problem P2 into the
following optimization problem:

P ′2 : minimize
{wiq},α

α

Q∑
q=1

Pq (36)

subject to
∑
q∈Qi

∣∣hHiqwiq

∣∣2
K∑
j 6=i

∑
r∈Qj

∣∣hHirwjr

∣∣2 + σ2

≥ γi,∀i

∑
i∈Kq

‖wiq‖2 ≤ αPq.

In other words, we let all the binary variables aiq to be 1. Let
us denote α? and α− as the optimal solutions in problems
P2 and P ′2, respectively.

Remark 4: Theorem 1 is also applicable to the relaxation of
problem P2 into problem P ′2. Corollary 2 is also applicable
to the optimal solution of problem P ′2. Unfortunately, solving
problem P ′2 does not always provide us a solution that meets
the conditions in Corollary 2. To illustrate this observation, let
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us consider a simple system setting with K = 1 and Q = 2.
In solving problem P ′1, the MS will be assigned to the BS
that requires the lowest transmit power. However, under the
problem formulation P ′2, the obtained solution will result in
non-zero transmit powers at both BSs to have α minimized,
i.e., the transmit powers are split and balanced at the both
BSs. Nevertheless, in solving problem P ′2, one can obtain the
lower bound on the optimal value of problem P2.

Remark 5: Suppose that one has obtained {w−iq} as the
optimal solution to problem P ′2. Let q+i = arg maxq∈Qi

SINRiq = arg maxq∈Qi

∣∣hHiqw−iq∣∣2 be the BS association
with MS-i. Then, for a known BS association profile
{q+i }, i = 1, . . . ,K, an optimal beamforming design for
minimizing the transmit power margin across the BSs can
be easily found [44] by solving the following optimization

minimize
{wiqi

},α
α

Q∑
q=1

Pq (37)

subject to

∣∣hHiqiwiqi

∣∣2∑K
j 6=i
∣∣hHiqjwjqj

∣∣2 + σ2
≥ γi,∀i∑

i∈Kq,qi=q

‖wiqi‖
2 ≤ αPq.

We denote the obtained per-BS transmit power margin as α+.
Certainly, α− and α+ serve as a lower bound and an upper
bound on α?, i.e.,

α− ≤ α? ≤ α+. (38)

We observe through numerous simulations that the gap be-
tween α− and α+ is nonexistent for most of the simulations
(with K > 1). For these cases, solving problem P ′2 does
provide the optimal solution of problem P2 too. For other
cases, the BS association profile {qi}, i = 1, . . . ,K and its
corresponding beamforming design can be employed as a
suboptimal solution to problem P2.

A. QCQP Solution Approach to Problem P ′2
In this section, we apply the QCQP solution approach pre-

sented in Section IV to devise the globally optimal solution
to problem P ′2. The Lagrangian of problem P ′2 can be stated
as

L2({wiq}, α,λ,µ)

= α

Q∑
q=1

Pq +

Q∑
q=1

µq

( ∑
i∈Kq

‖wiq‖2 − αPq
)

−
K∑
i=1

λi

(
1

γi

∑
q∈Qi

∣∣hHiqwiq

∣∣2 − K∑
j 6=i

∑
r∈Qj

∣∣hHirwjr

∣∣2 − σ2

)

=

K∑
i=1

λiσ
2 + α

( Q∑
q=1

Pq −
Q∑
q=1

µqPq

)

+

K∑
i=1

∑
q∈Qi

wH
iq

(
µqI−

λi
γi

hiqh
H
iq+

K∑
j 6=i

λjhjqh
H
jq

)
wiq,(39)

where λi’s and µq’s are the Lagrangian multipliers asso-
ciated with the SINR and the power constraints and λ ,
[λ1, . . . , λK ]T and µ , [µ1, . . . , µQ]T . The dual function is
then given by g2(λ,µ) = min{wiq},α L2({wiq}, α,λ,µ). If
any matrix µqI − λi

γi
hiqh

H
iq+

∑K
j 6=iλjhjqh

H
jq is not positive

semi-definite or
∑Q
q=1 Pq <

∑Q
q= µqPq , it is possible to find

wiq or α > 0 to make g2(λ,µ) unbounded below. Thus, the
dual problem is defined as

maximize
λ≥0,µ≥0

K∑
i=1

λiσ
2 (40)

subject to µqI +

K∑
j 6=i

λjhjqh
H
jq �

λi
γi

hiqh
H
iq ,∀q ∈ Qi,∀i

Q∑
q=1

µqPq ≤
Q∑
q=1

Pq.

Compared to problem (16) with pre-determined weight
factors wq’s, the variable µq , functioning as the weight for the
transmit power at BS-q, have to be optimized in problem (40).
Since the dual problem (40) is convex, its optimal solution
can be efficiently obtained by standard convex optimization
techniques.

Let λ? and µ? be the optimal solution of problem (40).
Except an extremely rare case where the channels from the
BSs to the MSs are exactly symmetric, it is not possible
to have µ?qI +

∑K
j 6=i

λ?jhjqh
H
jq �

λ?
i

γi
hiqh

H
iq , ∀q ∈ Qi,∀i.

Thus, L2({wiq}, α,λ?,µ?) is a strictly convex function.
According to Property 3 in Section III, strong duality holds,
i.e., the optimal solution of problem P ′2, can be found through
the dual problem (40). It is noted that w−iq must be set to
0 to have the Lagrangian function (39) minimized should
µ?qI +

∑K
j 6=i

λ?jhjqh
H
jq �

λ?
i

γi
hiqh

H
iq . By applying the same

argument as in the proof of Theorem 2, the optimal solution
{w−iq} to problem P ′2 typically has a sparse structure.

In one special case, among the set of constraints related to
a MS, say MS-i, if there exists only one qi ∈ Qi such that

µ?qiI +

K∑
j 6=i

λ?jhjqih
H
jqi �

λ?i
γi

hiqih
H
iqi , (41)

and

µ?qI +

K∑
j 6=

λ?jhjqh
H
jq �

λ?i
γi

hiqh
H
iq , ∀q ∈ Qi, q 6= qi, (42)

then one has w−iqi 6= 0 and w−iq = 0,∀q 6= qi,∀i as the
optimal solution to problem P ′2. Since the requirements in
Corollary 2 are now satisfied, the optimal solution of problem
P2 is also found. In other cases, the steps given in Remark 5
can be applied to generate a suboptimal BS association and
beamforming design solution of problem P2. We summarize
the steps to obtain lower and upper bounds on the optimal
per-BS transmit power margin α? and a suboptimal solution
of problem P2 in Algorithm 2.



11

Algorithm 2: Iterative Algorithm for Minimizing The
Per-BS Transmit Power Margin

1 Solve the dual problem (40) to obtain the optimal dual
solutions λ? and µ?;

2 Obtain the optimal primal solution {w−iqi}, α− of problem
P ′2;

3 Set α− as the lower bound on α?;
4 Verify if conditions (41)–(42) are satisfied;
5 if yes;
6 then {w−iqi} is optimal to problem P2;
7 otherwise set qi = argmaxq∈Qi

∣∣hH
iqw

−
iqi

∣∣2;
8 Set {qi} as a suboptimal BS association strategy;
9 Solve problem (37) to obtain the upper bound α+ on α? and

the corresponding beamforming design;

B. A Comparison to the Relaxation-and-Rounding Tech-
niques in [26]

In a prior work [26], we proposed two relaxation-and-
rounding techniques to solve the joint BS association and
beamforming design problem P2. Of the two techniques, the
better performing ‘relaxation-based-2’ approach first relaxes
all BS association variables {aiq} to 1 and finds the beam-
forming design through the optimization

P̃2 : minimize
{wiq},α

α

Q∑
q=1

Pq (43)

subject to

∣∣∣∣ ∑
q∈Qi

hHiqwiq

∣∣∣∣2
K∑
j 6=i

∣∣∣∣ ∑
r∈Qj

hHirwjr

∣∣∣∣2 + σ2

≥ γi,∀i

∑
i∈Kq

‖wiq‖2 ≤ αPq.

The obtained solution, denoted as {w̃iq}, is then utilized for
generating a BS association profile in a similar fashion as
given in Remark 5. Subsequently, the beamforming design
can be found accordingly to the generated BS association
profile [26].

It is noted that there is a subtle difference between prob-
lems P ′2 and P̃2 in expressing the SINR constraints. In fact,
with the SINR constraint expression in (43), problem P̃2

mimics the optimization of the beamformers in a single-cell
system with power constraints per groups of antennas. It is
noted that problem P̃2 can be recast into a convex second-
order conic program (SOCP) [26]. A quick verification on
the dual problem of the optimization P̃2 would indicate
that the obtained optimal solution {w̃iq} does not have a
sparse structure, i.e., w̃iq 6= 0, ∀i,∀q. Hence, {w̃iq} cannot
be an optimal solution of the original problem P2, unlike
the solution {w−iq} obtained from solving problem P ′2. In
addition, the obtained optimal value from solving problem
(43), denoted as α̃, is typically much smaller than the one
from solving problem P ′2, i.e., α−. Thus, the relaxation-
and-rounding approach in [26] usually generates a large gap

between the lower bound and upper bound on α?, unlike the
proposed QCQP solution approach proposed in this work. A
numerical comparison between the two approaches will be
presented in the simulation to verify this observation.

C. SDP Relaxation

In order to obtain a globally optimal solution to the opti-
mization problem P ′2, we can also apply the SDP approach.
Let Xiq = wiqw

H
iq and Hiq = hiqh

H
iq , the QCQP P ′2 can be

recast as an SDP

minimize
{Xiq},α

α

Q∑
q=1

Pq (44)

subject to
1

γi

∑
q∈Qi

Tr{HiqXiq}−
K∑
j 6=i

∑
r∈Qj

Tr{HirXjr}≥σ2,∀i

∑
i∈Kq

Tr{Xiq} ≤ αPq

Xiq � 0.

Herein, the rank constraint rank{Xiq} = 1 is dropped to
render problem (44) as a convex SDP. This convex relaxation
SDP then can be optimally solved by the interior-point
method and a convex SDP solver like cvx [38].

Since strong duality holds for the QCQP P ′2 and the dual
problem of the SDP (44) is also (40), a rank-1 solution of
{Xiq},∀q,∀i can always be found. Should the obtained solu-
tion of problem (44) meet all the requirements in Corollary 2,
it is also the optimal solution to the joint optimization of BS
association and beamforming design problem P2. Otherwise,
the approximation steps in Remark 5 can be applied to
generate a suboptimal solution of problem P2.

VIII. NUMERICAL RESULTS

This section presents the numerical evaluations on the
power consumption of a multiuser multicell system employ-
ing dynamic BS association. In all simulations, we assume
that the locations of the BSs are fixed and the distance
between any two nearby BSs is normalized to 1, whereas
the MSs are randomly located. Each BS is equipped with
M = 4 transmit antennas. The channel from a BS to a MS
is generated from i.i.d. Gaussian random variables (Rayleigh
fading) using the path loss model with the path loss exponent
of 4 and the reference distance of 1. The transmit power at
each BS is limited at 1 W (0 dB). The AWGN power spectral
density σ2 is assumed to be 0.01 W while the target SINRs
at the MSs are set the same γ.

In the first simulation setting, we consider a two-cell
system with 4 randomly located MSs between the two
BSs. The target SINR γ is set at 16 dB. For a randomly
generated channel realization, we plot in Fig. 2 the Pareto-
optimal tradeoff curve in the transmit powers at the two BSs
employing dynamic BS association. To obtain each tradeoff
point, we vary w1 in the interval [0, 1] and set w2 = 1−w1.
Depending on the weights, our proposed framework can
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Fig. 2: The Pareto-optimal tradeoff curve in power consumption between
the two BSs with optimal joint BS association and beamforming design.
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Fig. 3: Convergence of the proposed iterative algorithm to solve Problem
P ′1 with different SINR targets. The speed of convergence is slower with
higher SINR targets.

obtain the corresponding Pareto-optimal joint BS association
and beamforming design. In fact, it is impossible to find a
joint BS association and beamforming design that results in
a power allocation profile below the plotted Pareto-optimal
tradeoff curve. Note that at the extreme points of the tradeoff
curves, the MSs are all assigned to either one of the two BSs.

Fig. 3 illustrates the convergence of the iterative algorithm
in Section V-B, which allows us to obtain the optimal solution
to problem P ′1. In the figure, we plot the norm residue
‖λ(n) − λ?‖ (where λ? is the optimal uplink power vector)
versus the number of iterations with different SINR targets. It
is observed that the fixed-point iteration (32) converges very
fast. Interestingly, the speed of convergence becomes slower
with increasing SINR targets.

In the second simulation setting, we compare the results
obtained from the optimal BS association (with different
clustering sizes) to that obtained from fixed BS association
schemes. Examples of fixed BS association schemes for a MS

BS
1

BS
2

BS
3

BS
4

BS
5

BS
6

BS
7

Fig. 4: A seven-cell network grouped into three clusters with ten randomly
located MSs. A MS can only be associated to one of the BSs in its assigned
cluster.

are the channel-based scheme (assigned to the BS with the
strongest downlink channel) and the location-based scheme
(assigned to the closest BS). With fixed BS association, the
beamforming vectors for the MSs and the transmit power
at the BSs are optimally obtained by means of coordinated
beamforming [13]. We consider a multicell system with 7
BSs (each equipped with four antennas) and 10 MSs, as
illustrated in Fig. 4. Of the 7 cells, we consider two clustering
scenarios: i.) universal clustering with all 7 cells and ii.) 3-
cell clustering with cluster #1 (cell #1, #2, and #3), cluster
#2 (cell #1, #4, and #5), and cluster #3 (cell #1, #6, and
#7). In the 3-cell clustering scenario, a MS, say MS-i, is
first assigned to a cluster based on its relative distance to the
center of the cluster. MS-i then can only be associated to one
of the 3 BSs within its assigned cluster.

Fig. 5 displays the percentage of finding a feasible beam-
forming strategy to meet the target SINR at the MSs with
different BS association schemes. As the target SINR varies,
10, 000 channel realizations at each SINR value are used
to obtain the ratios in Fig. 6. Unlike the first simulation
setting with M = K = 4, it is not always possible to find
a feasible beamforming strategy in the second simulation
setting where M = 4 and K = 10. It is observed from
the figure that the chance of finding a feasible beamformer
design can be doubled by the proposed DPS strategy, thanks
to the optimal and dynamic association of the MSs to the
BSs. In contrast, by pre-determining the associations, an
optimal CS/CB strategy using [13] may not be found at
high probability. Interestingly, by grouping the cells into
clusters of 3 cells, one can obtain nearly the same optimal
performance achieved by the larger cluster of 7 cells.

Fig. 6 illustrates the average sum transmit power across the
7 BSs (with equal weights) versus the target SINR at the MSs
(each MS is set at the same SINR target). As observed from
the figure, more transmit power is required to meet the higher
target SINR. Out of the considered BS association schemes,
it is clearly shown that the optimal joint BS association and
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Fig. 5: Percentage of finding a beamforming design to meet the target SINR
with different BS association schemes. The optimal DPS can double the
chance of finding a feasible solution, compared to the fixed BS association
schemes with optimal CS/CB [13].
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Fig. 6: Average sum transmit power versus target SINR with different BS
association schemes. The optimal DPS can save more than 5 dB in the sum
transmit power, compared to the fixed BS association schemes with optimal
CS/CB [13].

beamforming design significantly outperforms the fixed BS
association schemes (location-based and channel-based). In
particular, the optimal joint schemes can save the transmit
power at each BS up to 5 dB over the fixed BS association
schemes with optimal CS/CB [13]. It is also observed that
the optimal joint scheme with 3-cell clustering only imposes
a penalty of 0.5 dB in power usage, compared to the full
7-cell clustering. Clearly, a small cluster size is much more
beneficial for practical implementation.

Fig. 7 shows the performance of the joint BS association
and beamforming design for minimizing per-BS transmit
power margin. As observed from the figure, the per-BS
transmit power margin is reduced by at least 5 dB to 10
dB by the dynamic BS association schemes proposed in
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Fig. 7: Per-BS transmit power margin versus target SINR with different BS
association schemes. The optimal DPS can provide a much better balance
in transmit powers across the BSs and reduce the peak transmit power as
much as 7 dB, compared to the fixed BS association schemes with optimal
CS/CB [13].
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Fig. 8: Comparing the per-BS transmit power margins obtained from
Algorithm 2 and the approach in [26]: solid lines are for the upper bounds
and dashed-dotted lines are for the lower bounds. The proposed DPS scheme
in Algorithm 2 provides a much smaller gap between its upper bound and
lower bound, compared to the approach in [26].

Algorithm 2, compared to the fixed BS association schemes
with optimal CS/CB in [13]. Herein, the lower bound was
generated by solving problem P ′2, whereas the upper bound
was generated by the BS association profile {q+i } accordingly
to the solution of problem P ′2. It is also observed from the
figure that the gap between the two bounds on the transmit
power margin as given in (38) is very tight for both 3-
cell and 7-cell clustering schemes. Hence, the proposed joint
BS association and beamforming design in Algorithm 2 can
generate an exceptionally well-performed and near-optimal
solution to the original problem P2.

In Fig. 8, we compare the performance between the
proposed Algorithm 2 in this work and the prior work in
[26]. As observed from the figure, by relying on the solution
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Fig. 9: Comparing the per-BS transmit power margin with 3-cell clustering
for the sum power minimization and the per-BS transmit power margin
minimization. The latter design criterion can reduce the peak transmit power
by 1-2 dB, compared to the former one.

of problem P̃2, the approach in [26] generates a very large
gap between the lower bound and upper bound on the optimal
value of problem P2. In contrast, the tight gap generated by
Algorithm 2 allows us to determine the minimum per-BS
transmit power margin more properly. In addition, coupled
with a closer upper bound, Algorithm 2 also generates a
better suboptimal BS association and beamforming design
than the approach in [26].

Finally, Fig. 9 compares the per-BS transmit power mar-
gins with 3-cell clustering obtained from the two design ob-
jectives: sum power minimization and per-BS power margin
minimization. It is observed from the figure that the per-BS
power margin can be reduced around 1-2 dB by the latter
design criterion.

IX. CONCLUSION

This paper has presented a solution framework to obtain
an optimal joint BS association and beamforming design for
downlink transmission. The design objective was to minimize
either the weighted transmit power across the BSs or the
per-BS transmit power margin with a set of target SINRs at
the MSs. By properly relaxing the nonconvex joint BS asso-
ciation and beamforming design problems, we have shown
that their optimal solutions can be obtained via the relaxed
problems. Under the first design objective, such optimality
is always guaranteed. Two solution approaches based on
the Lagrangian duality and the dual uplink problem have
been then proposed to find an optimal solution. Under the
second design objective, based on the obtained solution from
the relaxed problem, a near-optimal solution to the original
problem is then proposed. Simulation results have shown the
superior performance of the optimal joint BS association and
beamforming design over fixed BS association schemes. In
addition, simulation shows that 3-cell clustering is sufficient
to obtain a very close performance to the universal clustering.
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